Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Opt Express ; 32(5): 7954-7958, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439464

RESUMO

Lasers for generating monochromatic light beams with sideband spectra in strongly squeezed vacuum states are the basis for aspired optical continuous-variable quantum computers. We have developed a "squeeze laser" that produces 10 dB squeezed vacuum states at a wavelength of 1550 nm, the latter being tunable by 0.5 nm without losing the high squeeze factor. Several identical squeeze lasers can thus be combined to realise wavelength-division multiplexing. Our squeeze laser uses the mature technology of parametric down-conversion in a periodically poled KTP crystal placed in a cavity that resonates both the squeezed field and the second harmonic pump field. Unlike previous realisations, we achieve the double resonance and phase matching by individually optimising and controlling the temperatures of two sections of the crystal body. The wavelength range is currently limited by the tuneability of the 1550 nm master laser.

2.
Opt Lett ; 48(21): 5607-5610, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37910714

RESUMO

An important feature of a heterodyne laser Doppler vibrometer (LDV) is the possibility of measuring an optical path length oscillation at a frequency f at a choosable frequency fhet ± f, at which the photo-electric measurement shows an optical quantum noise that is significantly greater than the detector dark noise. The full-squeezed light enhancement of a heterodyne LDV's signal-to-noise ratio has not been achieved so far. Here we use a sideband spectrum that is squeezed around fhet = 40 MHz and demonstrate the squeezing-enhanced measurement of an optical path length vibration at f = 1 MHz of about 3.5 dB while fully maintaining the signal power. The proof of principle we provide will enable the realization of ultra-precise LDVs over an extended signal bandwidth for probes or environments that require low intensities.

3.
Phys Rev Lett ; 129(27): 273604, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638289

RESUMO

Squeezed states are nonclassical resources of quantum cryptography and photonic quantum computing. The higher the squeeze factor, the greater the quantum advantage. Limitations are set by the effective nonlinearity of the pumped medium and energy loss on the squeezed states produced. Here, we experimentally analyze for the first time the multistep distillation of squeezed states that in the ideal case can approach an infinite squeeze factor. Heralded by the probabilistic subtraction of two photons, the first step increased our squeezing from 2.4 to 2.8 dB. The second step was a two-copy Gaussification, which we emulated. For this, we simultaneously measured orthogonal quadratures of the distilled state and found by probabilistic postprocessing an enhancement from 2.8 to 3.4 dB. Our new approach is able to increase the squeeze factor beyond the limit set by the effective nonlinearity of the pumped medium.

4.
Opt Lett ; 46(23): 5850-5853, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851906

RESUMO

All gravitational-wave observatories (GWOs) have been using the laser wavelength of 1064 nm. Ultra-stable laser devices are at the sites of GEO 600, Kagra, LIGO, and Virgo. Since 2019, not only GEO 600, but also LIGO and Virgo have been using separate devices for squeezing the uncertainty of the light, so-called squeeze lasers. The sensitivities of future GWOs will strongly gain from reducing the thermal noise of the suspended mirrors, which involves shifting the wavelength into the 2 µm region. This Letter aims to reuse the existing high-performance lasers at 1064 nm. Here we report the realization of a squeeze laser at 2128 nm that uses pump light at 1064 nm. We achieve the direct observation of 7.2 dB of squeezing as the first step at megahertz sideband frequencies. The squeeze factor achieved is mainly limited by the photodiode's quantum efficiency, which we estimated to (92±3)%. Reaching larger squeeze factors seems feasible also in the required audio and sub-audio sideband, provided photo diodes with sufficiently low dark noise will be available. Our result promotes 2128 nm as the new, to the best of our knowledge, cost-efficient wavelength of GWOs.

5.
Opt Lett ; 45(22): 6194-6197, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-33186948

RESUMO

Cryogenic operation, in conjunction with new test-mass materials, promises to reduce the sensitivity limitations from thermal noise in gravitational-wave detectors. Currently, the most advanced materials under discussion are crystalline silicon as a substrate with amorphous silicon-based coatings. However, they require operational wavelengths around 2 µm to avoid laser absorption. Here we present a light source at 2128 nm based on a degenerate optical parametric oscillator to convert light from a 1064 nm nonplanar ring-oscillator. We achieve an external conversion efficiency of (87.1±0.4)% at a pump power of 52 mW in periodically poled potassium titanyl phosphate (internal efficiency was 93%). With our approach, light from the established and existing laser sources can be efficiently converted to the 2 µm regime while retaining the excellent stability properties.

6.
Phys Rev Lett ; 125(1): 011102, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678642

RESUMO

Thermal noise associated with the mechanical loss of current highly reflective mirror coatings is a critical limit to the sensitivity of gravitational-wave detectors. Several alternative coating materials show potential for reducing thermal noise, but cannot be used due to their high optical absorption. Multimaterial coatings have been proposed to enable the use of such materials to reduce thermal noise while minimizing their impact on the total absorption of the mirror coating. Here we present experimental verification of the multimaterial concept, by integrating aSi into a highly reflective SiO_{2} and Ta_{2}O_{5} multilayer coating. We show a significant thermal noise improvement and demonstrate consistent optical and mechanical performance. The multimaterial coating survives the heat treatment required to minimize the absorption of the aSi layers, with no adverse effects from the different thermomechanical properties of the three materials.

7.
Rep Prog Phys ; 82(1): 016905, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29569572

RESUMO

A century after Einstein's formulation of general relativity, the detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) made the first direct detection of gravitational waves. This historic achievement was the culmination of a world-wide effort and decades of instrument research. While sufficient for this monumental discovery, the current generation of gravitational-wave detectors represent the least sensitive devices necessary for the task; improved detectors will be required to fully exploit this new window on the Universe. In this paper, we review the application of squeezed vacuum states of light to gravitational-wave detectors as a way to reduce quantum noise, which currently limits their performance in much of the detection band.

8.
Opt Express ; 27(16): 22408-22418, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510535

RESUMO

Continuous-wave (cw) squeezed states of light have applications in sensing, metrology and secure communication. In recent decades their efficient generation has been based on parametric down-conversion, which requires pumping by externally generated pump light of twice the optical frequency. Currently, there is immense effort in miniaturizing squeezed-light sources for chip-integration. Designs that require just a single input wavelength are favored since they offer an easier realization. Here we report the first observation of cw squeezed states generated by self-phase modulation caused by subsequent up and down conversions. The wavelengths of input light and of balanced homodyne detection are identical, and 1550 nm in our case. At sideband frequencies around 1.075 GHz, a nonclassical noise reduction of (2.4 ± 0.1) dB is observed. The setup uses a second-order nonlinear crystal, but no externally generated light of twice the frequency. Our experiment is not miniaturized, but might open a route towards simplified chip-integrated realizations.

9.
Opt Lett ; 43(1): 110-113, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29328207

RESUMO

Strongly squeezed light at telecommunication wavelengths is a necessary resource for one-sided device-independent quantum key distribution via fiber networks. Reducing the optical pump power that is required for its generation will advance this quantum technology towards efficient out-of-laboratory operation. Here, we investigate the second-harmonic pump power requirement for parametric generation of continuous-wave squeezed vacuum states at 1550 nm in a state-of-the-art doubly resonant standing-wave periodically poled potassium titanyl phosphate cavity setup. We use coarse adjustment of the Gouy phase via the cavity length, together with temperature fine-tuning, for simultaneously achieving double resonance and (quasi) phase matching, and observe a squeeze factor of 13 dB at 1550 nm from just 12 mW of external pump power at 775 nm. We anticipate that optimizing the cavity coupler reflectivity will reduce the external pump power to 3 mW, without reducing the squeeze factor.

10.
Phys Rev Lett ; 121(26): 263602, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636152

RESUMO

Strongly squeezed states of light are a key technology in boosting the sensitivity of interferometric setups, such as in gravitational-wave detectors. However, the practical use of squeezed states is limited by optical loss, which reduces the observable squeeze factor. Here, we experimentally demonstrate that introducing squeezed states in additional, higher-order spatial modes can significantly improve the observed nonclassical sensitivity improvement when the loss is due to mode-matching deficiencies. Our results could be directly applied to gravitational-wave detectors, where this type of loss is a major contribution.

11.
Opt Lett ; 41(21): 5094-5097, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27805703

RESUMO

The distribution of entanglement with Gaussian statistic can be used to generate a mathematically proven secure key for quantum cryptography. The distributed secret key rate is limited by the entanglement strength, the entanglement bandwidth, and the bandwidth of the photoelectric detectors. The development of a source for strongly bipartite entangled light with high bandwidth promises an increased measurement speed and a linear boost in the secure data rate. Here, we present the experimental realization of a Gaussian entanglement source with a bandwidth of more than 1.25 GHz. The entanglement spectrum was measured with balanced homodyne detectors and was quantified via the inseparability criterion introduced by Duan and coworkers with a critical value of 4 below which entanglement is certified. Our measurements yielded an inseparability value of about 1.8 at a frequency of 300 MHz to about 2.8 at 1.2 GHz, extending further to about 3.1 at 1.48 GHz. In the experiment we used two 2.6 mm long monolithic periodically poled potassium titanyl phosphate (KTP) resonators to generate two squeezed fields at the telecommunication wavelength of 1550 nm. Our result proves the possibility of generating and detecting strong continuous-variable entanglement with high speed.

12.
Phys Rev Lett ; 117(18): 180801, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27835020

RESUMO

Quantum-dense metrology constitutes a special case of quantum metrology in which two orthogonal phase space projections of a signal are simultaneously sensed beyond the shot-noise limit. Previously, it was shown that the additional sensing channel that is provided by quantum-dense metrology contains information that can be used to identify and to discard corrupted segments from the measurement data. Here, we propose and demonstrate a new method in which this information is used for improving the sensitivity without discarding any measurement segments. Our measurement reached sub-shot-noise performance, although initially strong classical noise polluted the data. The new method has high potential for improving the noise spectral density of gravitational-wave detectors at signal frequencies of high astrophysical relevance.

13.
Phys Rev Lett ; 117(11): 110801, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661673

RESUMO

Squeezed states of light belong to the most prominent nonclassical resources. They have compelling applications in metrology, which has been demonstrated by their routine exploitation for improving the sensitivity of a gravitational-wave detector since 2010. Here, we report on the direct measurement of 15 dB squeezed vacuum states of light and their application to calibrate the quantum efficiency of photoelectric detection. The object of calibration is a customized InGaAs positive intrinsic negative (p-i-n) photodiode optimized for high external quantum efficiency. The calibration yields a value of 99.5% with a 0.5% (k=2) uncertainty for a photon flux of the order 10^{17} s^{-1} at a wavelength of 1064 nm. The calibration neither requires any standard nor knowledge of the incident light power and thus represents a valuable application of squeezed states of light in quantum metrology.

14.
Opt Express ; 23(12): 16035-41, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193577

RESUMO

Quantum metrology utilizes nonclassical states to improve the precision of measurement devices. In this context, strongly squeezed vacuum states of light have proven to be a useful resource. They are typically produced by spontaneous parametric down-conversion, but have not been generated at shorter wavelengths so far, as suitable nonlinear materials do not exist. Here, we report on the generation of strongly squeezed vacuum states at 532 nm with 5.5 dB noise suppression by means of frequency up-conversion from the telecommunication wavelength of 1550 nm. The up-converted states are employed in a model Mach-Zehnder interferometer to illustrate their use in quantum metrology.

15.
Opt Lett ; 40(9): 2053-5, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927782

RESUMO

Reflection gratings enable light coupling to optical cavities without transmission through substrates. Gratings that have three ports and are mounted in a second-order Littrow configuration even allow the coupling to high-finesse cavities using low diffraction efficiencies. In contrast to conventional transmissive cavity couplers, however, the phase of the diffracted light depends on the lateral position of the grating, which introduces an additional noise coupling. Here, we experimentally demonstrate that this kind of noise cancels out once both diffracted output ports of the grating are combined. We achieve the same signal-to-shot-noise ratio as for a conventional coupler. From this perspective, three-port grating couplers in a second-order Littrow configuration remain a valuable approach to reducing optical absorption of cavity coupler substrates in future gravitational-wave detectors.

16.
Phys Rev Lett ; 114(4): 043601, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25679890

RESUMO

Optomechanical coupling between a light field and the motion of a cavity mirror via radiation pressure plays an important role for the exploration of macroscopic quantum physics and for the detection of gravitational waves (GWs). It has been used to cool mechanical oscillators into their quantum ground states and has been considered to boost the sensitivity of GW detectors, e.g., via the optical spring effect. Here, we present the experimental characterization of generalized, that is, dispersive and dissipative, optomechanical coupling, with a macroscopic (1.5 mm)2-size silicon nitride membrane in a cavity-enhanced Michelson-type interferometer. We report for the first time strong optomechanical cooling based on dissipative coupling, even on cavity resonance, in excellent agreement with theory. Our result will allow for new experimental regimes in macroscopic quantum physics and GW detection.

17.
Opt Express ; 22(19): 22808-16, 2014 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-25321750

RESUMO

Nonclassical states of light are an important resource in today's quantum communication and metrology protocols. Quantum up-conversion of nonclassical states is a promising approach to overcome frequency differences between disparate subsystems within a quantum information network. Here, we present the generation of heralded narrowband single photons at 1550 nm via cavity enhanced spontaneous parametric down-conversion (SPDC) and their subsequent up-conversion to 532 nm. Quantum non-Gaussianity (QNG), which is an important feature for applications in quantum information science, was experimentally certified for the first time in frequency up-converted states.


Assuntos
Luz , Fótons , Teoria Quântica , Refratometria/instrumentação , Desenho de Equipamento
18.
Opt Lett ; 39(10): 2979-81, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24978252

RESUMO

We report on the experimental frequency conversion of a dim, coherent continuous-wave light field from 1550 to 532 nm with an external photon-number conversion efficiency of (84.4±1.5)%. In contrast to previous works, our conversion efficiency value incorporates all losses before the photoelectric detection, including those introduced by frequency filters. We used sum-frequency generation, which was realized in a standing-wave cavity built around a periodically poled type I potassium titanyl phosphate (PPKTP) crystal, pumped by an intense field at 810 nm. Our result is in full agreement with a numerical model. For optimized cavity coupler reflectivities, it predicts a conversion efficiency of up to 93% using the same PPKTP crystal.

19.
Phys Rev Lett ; 112(7): 073602, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579597

RESUMO

Squeezed vacuum states constitute a particularly useful resource in quantum information as well as in quantum metrology. The frequency conversion of these states is important to provide the bridge between different wavelengths within a sequence of downstream applications and also to provide a way for squeezed-state generation at so-far inaccessible wavelengths. Here we demonstrate the external quantum up-conversion of carrier-light-free squeezed vacuum states for the first time. Our result proves that nondegenerate sum-frequency generation preserves the coherences that are present between photon pairs and higher-order photon pairs of the squeezed input state.

20.
Opt Express ; 21(11): 13572-9, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23736610

RESUMO

We report the generation of squeezed vacuum states of light at 1550 nm with a broadband quantum noise reduction of up to 4.8 dB ranging from 5 MHz to 1.2 GHz sideband frequency. We used a custom-designed 2.6 mm long biconvex periodically-poled potassium titanyl phosphate (PPKTP) crystal. It featured reflectively coated end surfaces, 2.26 GHz of linewidth and generated the squeezing via optical parametric amplification. Two homodyne detectors with different quantum efficiencies and bandwidths were used to characterize the non-classical noise suppression. We measured squeezing values of up to 4.8 dB from 5 to 100 MHz and up to 3 dB from 100 MHz to 1.2 GHz. The squeezed vacuum measurements were limited by detection loss. We propose an improved detection scheme to measure up to 10 dB squeezing over 1 GHz. Our results of GHz bandwidth squeezed light generation provide new prospects for high-speed quantum key distribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA