RESUMO
BACKGROUND: Solar urticaria is a rare photodermatosis characterized by rapid-onset sunlight-induced urticaria, but its pathophysiology is not well understood. OBJECTIVE: We sought to define cutaneous cellular and molecular events in the evolution of solar urticaria following its initiation by solar-simulated UV radiation (SSR) and compare with healthy controls (HC). METHODS: Cutaneous biopsy specimens were taken from unexposed skin and skin exposed to a single low (physiologic) dose of SSR at 30 minutes, 3 hours, and 24 hours after exposure in 6 patients with solar urticaria and 6 HC. Biopsy specimens were assessed by immunohistochemistry and bulk RNA-sequencing analysis. RESULTS: In solar urticaria specimens, there was enrichment of several innate immune pathways, with striking early involvement of neutrophils, which was not observed in HC. Multiple proinflammatory cytokine and chemokine genes were upregulated (including IL20, IL6, and CXCL8) or identified as upstream regulators (including TNF, IL-1ß, and IFN-γ). IgE and FcεRI were identified as upstream regulators, and phosphorylated signal transducer and activator of transcription 3 expression in mast cells was increased in solar urticaria at 30 minutes and 3 hours after SSR exposure, suggesting a mechanism of mast cell activation. Clinical resolution of solar urticaria by 24 hours mirrored resolution of inflammatory gene signature profiles. Comparison with available datasets of chronic spontaneous urticaria showed transcriptomic similarities relating to immune activation, but several transcripts were identified solely in solar urticaria, including CXCL8 and CSF2/3. CONCLUSIONS: Solar urticaria is characterized by rapid signal transducer and activator of transcription 3 activation in mast cells and involvement of multiple chemotactic and innate inflammatory pathways, with FcεRI engagement indicated as an early event.
Assuntos
Mastócitos , Infiltração de Neutrófilos , Receptores de IgE , Fator de Transcrição STAT3 , Urticária Solar , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Citocinas/metabolismo , Citocinas/imunologia , Mastócitos/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Transtornos de Fotossensibilidade/imunologia , Receptores de IgE/genética , Pele/imunologia , Pele/patologia , Fator de Transcrição STAT3/metabolismo , Luz Solar/efeitos adversos , Raios Ultravioleta/efeitos adversos , Urticária Solar/imunologiaRESUMO
BACKGROUND: Inhibitors of epidermal growth factor receptor (EGFRi) or mitogen-activated kinase (MEKi) induce a folliculitis in 75-90% of patients, the pathobiology of which remains insufficiently understood. OBJECTIVES: To characterize changes in the skin immune status and global transcriptional profile of patients treated with EGFRi; to investigate whether EGFRi affects the hair follicle's (HF) immune privilege (IP); and to identify early proinflammatory signals induced by EGFRi/MEKi in human scalp HFs ex vivo. METHODS: Scalp biopsies were taken from patients exhibiting folliculitis treated long term with EGFRi ('chronic EGFRi' group, n = 9) vs. healthy scalp skin (n = 9) and patients prior to commencing EGFRi treatment and after 2 weeks of EGFRi therapy ('acute EGFRi' group, n = 5). Healthy organ-cultured scalp HFs were exposed to an EGFRi (erlotinib, n = 5) or a MEKi (cobimetinib, n = 5). Samples were assessed by quantitative immunohistomorphometry, RNA sequencing (RNAseq) and in situ hybridization. RESULTS: The 'chronic EGFRi' group showed CD8+ T-cell infiltration of the bulge alongside a partial collapse of the HF's IP, evidenced by upregulated major histocompatibility complex (MHC) class I, ß2-microglobulin (B2 M) and MHC class II, and decreased transforming growth factor-ß1 protein expression. Healthy HFs treated with EGFRi/MEKi ex vivo also showed partial HF IP collapse and increased transcription of human leucocyte antigen (HLA)-A, HLA-DR and B2 M transcripts. RNAseq analysis showed increased transcription of chemokines (CXCL1, CXCL13, CCL18, CCL3, CCL7) and interleukin (IL)-26 in biopsies from the 'chronic EGFRi' cohort, as well as increased IL-33 and decreased IL-37 expression in HF biopsies from the 'acute EGFRi' group and in organ-cultured HFs. CONCLUSIONS: The data show that EGFRi/MEKi compromise the physiological IP of human scalp HFs and suggest that future clinical management of EGFRi/MEKi-induced folliculitis requires HF IP protection and inhibition of IL-33.
About 7590% of people with cancer who are treated with drugs called EGFR inhibitors (EGFRi) and MEK inhibitors (MEKi) will get a skin condition called folliculitis. This is where the hair follicles become inflamed. Despite this, the reasons why some patients develop this are not well understood. In this study, we had three goals. We wanted to understand how these medications alter the skin's immune response and genetic processes. We also wished to determine the impact of the medications on the immune protection of hair follicles. Finally, we wanted to find early signs of inflammation in hair follicles caused by the medications. We studied scalp samples from people who got folliculitis after long-term EGFRi treatment and compared them to samples of healthy scalp skin. We also examined patients before and after they began EGFRi treatment. In the lab, we exposed healthy hair follicles to an EGFRi called 'erlotinib' or a MEKi called 'cobimetinib'. We then carried out detailed imaging and genetic analyses. We found that long-term treatment with EGFRi increased certain immune cells (called CD8+ T cells) in the hair follicle area. This led to a breakdown in the immune protection around hair follicles. A similar breakdown was found in lab-treated healthy follicles. Genetic changes linked to inflammation were also found. Our findings suggest that EGFRi and MEKi treatments could affect the natural immune defence of hair follicles in the scalp and cause folliculitis. Protecting the immune system and controlling inflammation might be the key to treating people with these drug-related skin conditions.
Assuntos
Receptores ErbB , Foliculite , Privilégio Imunológico , Inibidores de Proteínas Quinases , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Foliculite/imunologia , Foliculite/induzido quimicamente , Folículo Piloso/imunologia , Folículo Piloso/efeitos dos fármacos , Privilégio Imunológico/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Inibidores de Proteínas Quinases/farmacologia , Dermatoses do Couro Cabeludo/imunologia , Dermatoses do Couro Cabeludo/tratamento farmacológicoRESUMO
Phenotypic stability of Chinese hamster ovary (CHO) cells over long term culture (LTC) presents one of the most pressing challenges in the development of therapeutic protein manufacturing processess. However, our current understanding of the consequences of LTC on recombinant (r-) CHO cell lines is still limited, particularly as clonally-derived cell lines present distinct production stability phenotypes. This study evaluated changes of culture performance, global gene expression, and cell metabolism of two clonally-derived CHO cell lines with a stable or unstable phenotype during the LTC (early [EP] vs. late [LP] culture passages). Our findings indicated that LTC altered the behavior of CHO cells in culture, in terms of growth, overall gene expression, and cell metabolism. Regardless whether cells were categorized as stable or unstable in terms of r-protein production, CHO cells at LP presented an earlier decline in cell viability and loss of any observable stationary phase. These changes were parallelled by the upregulation of genes involved in cell proliferation and survival pathways (i.e., MAPK/ERK, PI3K-Akt). Stable and unstable CHO cell lines both showed increased consumption of glucose and amino acids at LP, with a parallel accumulation of greater amounts of lactate and TCA cycle intermediates. In terms of production stability, we found that decreased r-protein production in the unstable cell line directly correlated to the loss in r-gene copy number and r-mRNA expression. Our data revealed that LTC produced ubiquitious effects on CHO cell phenotypes, changes that were rooted in alterations in cell transcriptome and metabolome. Overall, we found that CHO cells adapted their cellular function to proliferation and survival during the LTC, some of these changes may well have limited effects on overall yield or specific productivity of the desired r-product, but they may be critical toward the capacity of cells to handle r-proteins with specific molecular features.
Assuntos
Fosfatidilinositol 3-Quinases , Transcriptoma , Cricetinae , Animais , Cricetulus , Células CHO , Proteínas Recombinantes/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismoRESUMO
Unravelling how energy metabolism and stress responses are regulated in human scalp hair follicles could reveal novel insights into the controls of hair growth and provide new targets to manage hair loss disorders. The Mitochondrial Pyruvate Carrier (MPC) imports pyruvate, produced via glycolysis, into the mitochondria, fuelling the TCA cycle. Previous work has shown that MPC inhibition promotes lactate generation, which activates murine epithelial hair follicle stem cells (eHFSCs). However, by pharmacologically targeting the MPC in short-term human hair follicle ex vivo organ culture experiments using UK-5099, we induced metabolic stress-responsive proliferative arrest throughout the human hair follicle epithelium, including within Keratin 15+ eHFSCs. Through transcriptomics, MPC inhibition was shown to promote a gene expression signature indicative of disrupted FGF, IGF, TGFß and WNT signalling, mitochondrial dysfunction, and activation of the integrated stress response (ISR), which can arrest cell cycle progression. The ISR, mediated by the transcription factor ATF4, is activated by stressors including amino acid deprivation and ER stress, consistent with MPC inhibition within our model. Using RNAScope, we confirmed the upregulation of both ATF4 and the highly upregulated ATF4-target gene ADM2 on human hair follicle tissue sections in situ. Moreover, treatment with the ISR inhibitor ISRIB attenuated both the upregulation of ADM2 and the proliferative block imposed via MPC inhibition. Together, this work reveals how the human hair follicle, as a complex and metabolically active human tissue system, can dynamically adapt to metabolic stress.
Assuntos
Folículo Piloso , Humanos , Folículo Piloso/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Estresse Fisiológico , Proliferação de Células , Mitocôndrias/metabolismoRESUMO
Canine hypoadrenocorticism is an endocrine disorder characterised by inadequate secretion of steroid hormones from the adrenal glands. Pathology results from immune-mediated destruction of the adrenal cortex, which is similar to that seen in the human Addison's disease. Both the canine and human diseases have similar clinical presentation, with the diagnosis based on performing a dynamic adrenocorticotropic hormone stimulation test. MHC class II has previously been associated with the human and canine diseases. In the current study, we conducted an MHC class II association study in eight breeds of dog with diagnoses of hypoadrenocorticism. We demonstrated significant differences in dog leukocyte antigen (DLA) haplotype frequencies in six of these breeds: Cocker spaniel, Springer spaniel, Labrador, West Highland white terrier (WHWT), Bearded collie, and Standard poodle. In the Springer spaniel, the DLA-DRB1*015:01--DQA1*006:01--DQB1*023:01 haplotype was significantly associated with disease risk (p = 0.014, odds ratio (OR) = 5.14) and showed a similar trend in the Cocker spaniel. This haplotype is related to one associated with hypoadrenocorticism in the Nova Scotia duck tolling retriever. Similar haplotypes shared between breeds were demonstrated, with DLA-DRB1*001:01--DQA1*001:01--DQB1*002:01 more prevalent in both affected Labrador (p = 0.0002, OR = 3.06) and WHWT (p = 0.01, OR = 2.11). Other haplotypes that have not previously been associated with the disease were identified. The inter-breed differences in DLA haplotypes associated with susceptibility to canine hypoadrenocorticism could represent divergent aetiologies. This could have implications for clinical diagnosis and future comparative studies. Alternatively, it may suggest that the gene of interest is closely linked to the MHC.
Assuntos
Insuficiência Adrenal/veterinária , Doenças do Cão/genética , Genes MHC da Classe II , Predisposição Genética para Doença , Insuficiência Adrenal/genética , Sequência de Aminoácidos , Animais , Cães , Cadeias beta de HLA-DQ/química , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/química , Cadeias HLA-DRB1/genética , Haplótipos , Homozigoto , Dados de Sequência Molecular , Alinhamento de SequênciaRESUMO
Inherited retinal dystrophies (IRDs) are characterized by progressive degeneration and loss of light-sensing photoreceptors. The most promising therapeutic approach for IRDs is gene supplementation therapy using viral vectors, which requires the presence of viable photoreceptors at the time of intervention. At later disease stages, photoreceptors are lost and can no longer be rescued with this approach. For these patients, conferring light-sensing abilities to the remaining interneurons of the ON circuit (i.e., ON bipolar cells) using optogenetic tools poses an alternative treatment strategy. Such treatments, however, are hampered by the lack of efficient gene delivery tools targeting ON bipolar cells, which in turn rely on the effective isolation of these cells to facilitate tool development. Herein, we describe a method to selectively isolate ON bipolar cells via fluorescence-activated cell sorting (FACS), based on the expression of two intracellular markers. We show that the method is compatible with highly sensitive downstream analyses and suitable for the isolation of ON bipolar cells from healthy as well as degenerated mouse retinas. Moreover, we demonstrate that this approach works effectively using non-human primate (NHP) retinal tissue, thereby offering a reliable pipeline for universal screening strategies that do not require inter-species adaptations or transgenic animals.
RESUMO
INTRODUCTION: Oculo-auriculo-vertebral spectrum (OAVS OMIM 164210) is a craniofacial developmental disorder affecting the development of the structures derived from the 1st and the 2nd branchial arches during embryogenesis, with consequential maxillary, mandibular, and ear abnormalities. The phenotype in OAVS is variable and associated clinical features can involve the cardiac, renal, skeletal, and central nervous systems. Its aetiology is still poorly understood. METHODS: We have evaluated the clinical phenotypes of 51 previously unpublished patients with OAVS and their parents, and performed comparative genomic hybridization microarray studies to identify potential causative loci. RESULTS: Of all 51 patients, 16 (31%) had a family history of OAVS. Most had no relevant pre-natal history and only 5 (10%) cases had a history of environmental exposures that have previously been described as risk factors for OAVS. In 28 (55%) cases, the malformations were unilateral. When the involvement was bilateral, it was asymmetric. Ear abnormalities were present in 47 (92%) patients (unilateral in 24; and bilateral in 23). Hearing loss was common (85%), mostly conductive, but also sensorineural, or a combination of both. Hemifacial microsomia was present in 46 (90%) patients (17 also presented facial nerve palsy). Ocular anomalies were present in 15 (29%) patients. Vertebral anomalies were confirmed in 10 (20%) cases; 50% of those had additional heart, brain and/or other organ abnormalities. Brain abnormalities were present in 5 (10%) patients; developmental delay was more common among these patients. Limb abnormalities were found in 6 (12%) patients, and urogenital anomalies in 5 (10%). Array-CGH analysis identified 22q11 dosage anomalies in 10 out of 22 index cases screened. DISCUSSION: In this study we carried out in-depth phenotyping of OAVS in a large, multicentre cohort. Clinical characteristics are in line with those reported previously, however, we observed a higher incidence of hemifacial microsomia and lower incidence of ocular anomalies. Furthermore our data suggests that OAVS patients with vertebral anomalies or congenital heart defects have a higher frequency of additional brain, limb or other malformations. We had a higher rate of familial cases in our cohort in comparison with previous reports, possibly because these cases were referred preferentially to our genetic clinic where family members underwent examination. We propose that familial OAVS cases show phenotypic variability, hence, affected relatives might have been misclassified in previous reports. Moreover, in view of its phenotypic variability, OAVS is potentially a spectrum of conditions, which overlap with other conditions, such as mandibulofacial dysostosis. Array CGH in our cohort identified recurrent dosage anomalies on 22q11, which may contribute to, or increase the risk of OAVS. We hypothesize that although the 22q11 locus may harbour gene(s) or regulatory elements that play a role in the regulation of craniofacial symmetry and 1st and 2nd branchial arch development, OAVS is a heterogeneous condition and many cases have a multifactorial aetiology or are caused by mutations in as yet unidentified gene(s).
Assuntos
Deficiências do Desenvolvimento/genética , Síndrome de Goldenhar/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Encéfalo/anormalidades , Hibridização Genômica Comparativa , Orelha/anormalidades , Orelha/embriologia , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Feminino , Síndrome de Goldenhar/diagnóstico , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética , Hérnia Diafragmática/diagnóstico , Hérnia Diafragmática/genética , Humanos , Masculino , Coluna Vertebral/anormalidadesRESUMO
Bovine digital dermatitis (BDD) is a serious infectious inflammatory lameness causing pain and suffering to many cattle worldwide and which has severe economic implications. This study set out to investigate relationships between the treponemes considered causal of BDD and the local inflammatory response of the bovine host. Here we describe, for the first time, the isolation of bovine foot skin keratinocytes and fibroblasts as separate cell lineages. These cell lines were then exposed to treponeme whole-cell sonicates, and the gene expression of selected host inflammatory mediators investigated using quantitative reverse transcriptase PCR. Several genes, including those encoding RANTES/CCL5, MMP12, TNFα, TGFß and TIMP3 were significantly upregulated in fibroblasts exposed to whole-cell sonicates derived from BDD treponeme phylotypes. For each of the above genes there were similar fibroblast expression increases for all three BDD treponeme phylotypes tested, suggesting common virulence mechanisms. With bovine foot skin keratinocytes, we were unable to detect expression of RANTES/CCL5 and after incubation with BDD treponeme constituents we were unable to observe any significant changes in expression of inflammatory mediators tested. These contrasting results suggest fibroblasts rather than keratinocytes may be an important shared target of pathogenesis for BDD treponemes.
Assuntos
Bovinos , Dermatite/veterinária , Fibroblastos/microbiologia , Inflamação/metabolismo , Queratinócitos/microbiologia , Treponema/fisiologia , Animais , Doenças dos Bovinos/microbiologia , Células Cultivadas , Dermatite/microbiologia , Fibroblastos/metabolismo , Pé , Regulação da Expressão Gênica , Queratinócitos/metabolismo , Pele/citologia , Infecções por Treponema/microbiologia , Infecções por Treponema/veterináriaRESUMO
BACKGROUND: Canine diabetes is a common endocrine disorder with an estimated breed-related prevalence ranging from 0.005% to 1.5% in pet dogs. Increased prevalence in some breeds suggests that diabetes in dogs is influenced by genetic factors and similarities between canine and human diabetes phenotypes suggest that the same genes might be associated with disease susceptibility in both species. Between 1-5% of human diabetes cases result from mutations in a single gene, including maturity onset diabetes of the adult (MODY) and neonatal diabetes mellitus (NDM). It is not clear whether monogenic forms of diabetes exist within some dog breeds. Identification of forms of canine monogenic diabetes could help to resolve the heterogeneity of the condition and lead to development of breed-specific genetic tests for diabetes susceptibility. RESULTS: Seventeen dog breeds were screened for single nucleotide polymorphisms (SNPs) in eighteen genes that have been associated with human MODY/NDM. Six SNP associations were found from five genes, with one gene (ZFP57) being associated in two different breeds. CONCLUSIONS: Some of the genes that have been associated with susceptibility to MODY and NDM in humans appear to also be associated with canine diabetes, although the limited number of associations identified in this study indicates canine diabetes is a heterogeneous condition and is most likely to be a polygenic trait in most dog breeds.