Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de estudo
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 58(5): 870-85, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-25921068

RESUMO

Circular RNAs (circRNAs) are an endogenous class of animal RNAs. Despite their abundance, their function and expression in the nervous system are unknown. Therefore, we sequenced RNA from different brain regions, primary neurons, isolated synapses, as well as during neuronal differentiation. Using these and other available data, we discovered and analyzed thousands of neuronal human and mouse circRNAs. circRNAs were extraordinarily enriched in the mammalian brain, well conserved in sequence, often expressed as circRNAs in both human and mouse, and sometimes even detected in Drosophila brains. circRNAs were overall upregulated during neuronal differentiation, highly enriched in synapses, and often differentially expressed compared to their mRNA isoforms. circRNA expression correlated negatively with expression of the RNA-editing enzyme ADAR1. Knockdown of ADAR1 induced elevated circRNA expression. Together, we provide a circRNA brain expression atlas and evidence for important circRNA functions and values as biomarkers.


Assuntos
Encéfalo/metabolismo , RNA/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Drosophila melanogaster , Humanos , Camundongos , Dados de Sequência Molecular , Neurogênese , Especificidade de Órgãos , RNA/genética , RNA Circular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA , Sinapses/metabolismo
2.
BMC Biol ; 15(1): 44, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28526029

RESUMO

BACKGROUND: Recent developments in droplet-based microfluidics allow the transcriptional profiling of thousands of individual cells in a quantitative, highly parallel and cost-effective way. A critical, often limiting step is the preparation of cells in an unperturbed state, not altered by stress or ageing. Other challenges are rare cells that need to be collected over several days or samples prepared at different times or locations. METHODS: Here, we used chemical fixation to address these problems. Methanol fixation allowed us to stabilise and preserve dissociated cells for weeks without compromising single-cell RNA sequencing data. RESULTS: By using mixtures of fixed, cultured human and mouse cells, we first showed that individual transcriptomes could be confidently assigned to one of the two species. Single-cell gene expression from live and fixed samples correlated well with bulk mRNA-seq data. We then applied methanol fixation to transcriptionally profile primary cells from dissociated, complex tissues. Low RNA content cells from Drosophila embryos, as well as mouse hindbrain and cerebellum cells prepared by fluorescence-activated cell sorting, were successfully analysed after fixation, storage and single-cell droplet RNA-seq. We were able to identify diverse cell populations, including neuronal subtypes. As an additional resource, we provide 'dropbead', an R package for exploratory data analysis, visualization and filtering of Drop-seq data. CONCLUSIONS: We expect that the availability of a simple cell fixation method will open up many new opportunities in diverse biological contexts to analyse transcriptional dynamics at single-cell resolution.


Assuntos
Células Cultivadas/citologia , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica/métodos , Análise de Célula Única/métodos , Animais , Cerebelo/citologia , Drosophila/citologia , Embrião não Mamífero/citologia , Citometria de Fluxo/instrumentação , Perfilação da Expressão Gênica/instrumentação , Humanos , Metanol/química , Camundongos , RNA Mensageiro/análise , Rombencéfalo/citologia , Análise de Sequência de RNA , Análise de Célula Única/instrumentação , Software
3.
J Mol Med (Berl) ; 95(11): 1179-1189, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28842720

RESUMO

Cellular circular RNAs (circRNAs) are generated by head-to-tail splicing and are present in all multicellular organisms studied so far. Recently, circRNAs have emerged as a large class of RNA which can function as post-transcriptional regulators. It has also been shown that many circRNAs are tissue- and stage-specifically expressed. Moreover, the unusual stability and expression specificity make circRNAs important candidates for clinical biomarker research. Here, we present a circRNA expression resource of 20 human tissues highly relevant to disease-related research: vascular smooth muscle cells (VSMCs), human umbilical vein cells (HUVECs), artery endothelial cells (HUAECs), atrium, vena cava, neutrophils, platelets, cerebral cortex, placenta, and samples from mesenchymal stem cell differentiation. In eight different samples from a single donor, we found highly tissue-specific circRNA expression. Circular-to-linear RNA ratios revealed that many circRNAs were expressed higher than their linear host transcripts. Among the 71 validated circRNAs, we noticed potential biomarkers. In adenosine deaminase-deficient, severe combined immunodeficiency (ADA-SCID) patients and in Wiskott-Aldrich-Syndrome (WAS) patients' samples, we found evidence for differential circRNA expression of genes that are involved in the molecular pathogenesis of both phenotypes. Our findings underscore the need to assess circRNAs in mechanisms of human disease. KEY MESSAGES: circRNA resource catalog of 20 clinically relevant tissues. circRNA expression is highly tissue-specific. circRNA transcripts are often more abundant than their linear host RNAs. circRNAs can be differentially expressed in disease-associated genes.


Assuntos
Biomarcadores , Perfilação da Expressão Gênica , RNA , Análise por Conglomerados , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células-Tronco Mesenquimais , Anotação de Sequência Molecular , Especificidade de Órgãos/genética , RNA Circular , Análise de Sequência de RNA , Adulto Jovem
4.
Science ; 357(6357)2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28798046

RESUMO

Hundreds of circular RNAs (circRNAs) are highly abundant in the mammalian brain, often with conserved expression. Here we show that the circRNA Cdr1as is massively bound by the microRNAs (miRNAs) miR-7 and miR-671 in human and mouse brains. When the Cdr1as locus was removed from the mouse genome, knockout animals displayed impaired sensorimotor gating-a deficit in the ability to filter out unnecessary information-which is associated with neuropsychiatric disorders. Electrophysiological recordings revealed dysfunctional synaptic transmission. Expression of miR-7 and miR-671 was specifically and posttranscriptionally misregulated in all brain regions analyzed. Expression of immediate early genes such as Fos, a direct miR-7 target, was enhanced in Cdr1as-deficient brains, providing a possible molecular link to the behavioral phenotype. Our data indicate an in vivo loss-of-function circRNA phenotype and suggest that interactions between Cdr1as and miRNAs are important for normal brain function.


Assuntos
Encéfalo/fisiologia , MicroRNAs/metabolismo , Processamento Pós-Transcricional do RNA , RNA Longo não Codificante/metabolismo , RNA/metabolismo , Animais , Comportamento Animal , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Loci Gênicos , Humanos , Camundongos , Camundongos Knockout , Estabilidade de RNA , RNA Circular , RNA Longo não Codificante/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA