Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Hepatol ; 77(6): 1619-1630, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35985549

RESUMO

BACKGROUND & AIMS: Surgical resection of the cancerous tissue represents one of the few curative treatment options for neoplastic liver disease. Such partial hepatectomy (PHx) induces hepatocyte hyperplasia, which restores liver function. PHx is associated with bacterial translocation, leading to an immediate immune response involving neutrophils and macrophages, which are indispensable for the priming phase of liver regeneration. Additionally, PHx induces longer-lasting intrahepatic apoptosis. Herein, we investigated the effect of apoptotic extracellular vesicles (aEVs) on neutrophil function and their role in this later phase of liver regeneration. METHODS: A total of 124 patients undergoing PHx were included in this study. Blood levels of the apoptosis marker caspase-cleaved cytokeratin-18 (M30) and circulating aEVs were analyzed preoperatively and on the first and fifth postoperative days. Additionally, the in vitro effects of aEVs on the secretome, phenotype and functions of neutrophils were investigated. RESULTS: Circulating aEVs increased at the first postoperative day and were associated with higher concentrations of M30, which was only observed in patients with complete liver recovery. Efferocytosis of aEVs by neutrophils induced an activated phenotype (CD11bhighCD16highCD66bhighCD62Llow); however, classical inflammatory responses such as NETosis, respiratory burst, degranulation, or secretion of pro-inflammatory cytokines were not observed. Instead, efferocytosing neutrophils released various growth factors including fibroblast growth factor-2 and hepatocyte growth factor (HGF). Accordingly, we observed an increase of HGF-positive neutrophils after PHx and a correlation of plasma HGF with M30 levels. CONCLUSIONS: These data suggest that the clearance of PHx-induced aEVs leads to a population of non-inflammatory but regenerative neutrophils, which may support human liver regeneration. LAY SUMMARY: In this study, we show that the surgical removal of a diseased part of the liver triggers a specific type of programmed cell death in the residual liver tissue. This results in the release of vesicles from dying cells into the blood, where they are cleared by circulating immune cells. These respond by secreting hepatocyte growth factors that could potentially support the regeneration of the liver remnant.


Assuntos
Vesículas Extracelulares , Hiperplasia Nodular Focal do Fígado , Humanos , Hepatectomia , Neutrófilos , Transporte Biológico , Regeneração Hepática
2.
Platelets ; 27(5): 479-83, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26764560

RESUMO

Infection induces platelet activation and consumption, which leads to thrombocytopenia, enhances microvascular thrombosis, impairs microcirculation and eventually triggers disseminated intravascular coagulation (DIC). It is well characterized that endotoxemia results in a pro-inflammatory and pro-coagulatory state, which favors platelet activation. However the early, direct effects of endotoxemia on platelets have not been investigated so far. Therefore we aimed to determine the early effects of the endotoxin lipopolysaccharide (LPS) on platelet function in vivo. In a human endotoxemia model, 15 healthy volunteers were stimulated with LPS (2 ng/kg). Blood was drawn before, 10, 30 and 60 min after LPS challenge and platelet activation analyzed by flow cytometry (GPIIb/IIIa activation, surface CD62P and CD40L, intraplatelet reactive oxygen formation and platelet-leukocyte aggregates) and ELISA (sCD40L, sCD62P and CXCL4). In parallel, blood samples and platelets were spiked with LPS (50 pg/ml) in vitro and monitored over 60 min for the same platelet activation markers. In vitro platelet stimulation with LPS activated platelets independent of the presence of leukocytes and enhanced their adhesion to endothelial cells. In contrast, in vivo no increase in GPIIb/IIIa activation or surface expression of CD62P was observed. However, endotoxemia resulted in a significant drop in platelet count and elevated the plasma CXCL4 levels already 10 min after the LPS challenge. These data indicate that LPS rapidly activates platelets, leading to α-granule release and endothelial adhesion. This might explain the drop in platelet count observed at the onset of endotoxemia.


Assuntos
Plaquetas/metabolismo , Endotoxemia/sangue , Endotoxemia/diagnóstico , Ativação Plaquetária , Biomarcadores , Ligante de CD40/sangue , Células Endoteliais/metabolismo , Endotoxemia/etiologia , Citometria de Fluxo , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipopolissacarídeos/efeitos adversos , Masculino , Selectina-P/sangue , Adesividade Plaquetária , Contagem de Plaquetas , Fator Plaquetário 4/sangue , Espécies Reativas de Oxigênio/metabolismo
3.
Transfus Med Hemother ; 43(2): 78-88, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27226790

RESUMO

Beyond their traditional role in haemostasis and thrombosis, platelets are increasingly recognised as immune modulatory cells. Activated platelets and platelet-derived microparticles can bind to leukocytes, which stimulates mutual activation and results in rapid, local release of platelet-derived cytokines. Thereby platelets modulate leukocyte effector functions and contribute to inflammatory and immune responses to injury or infection. Platelets enhance leukocyte extravasation, differentiation and cytokine release. Platelet-neutrophil interactions boost oxidative burst, neutrophil extracellular trap formation and phagocytosis and play an important role in host defence. Platelet interactions with monocytes propagate their differentiation into macrophages, modulate cytokine release and attenuate macrophage functions. Depending on the underlying pathology, platelets can enhance or diminish leukocyte cytokine production, indicating that platelet-leukocyte interactions represent a fine balanced system to restrict excessive inflammation during infection. In atherosclerosis, platelet interaction with neutrophils, monocytes and dendritic cells accelerates key steps of atherogenesis by promoting leukocyte extravasation and foam cell formation. Platelet-leukocyte interactions at sites of atherosclerotic lesions destabilise atherosclerotic plaques and promote plaque rupture. Leukocytes in turn also modulate platelet function and production, which either results in enhanced platelet destruction or increased platelet production. This review aims to summarise the key effects of platelet-leukocyte interactions in inflammation, infection and atherosclerosis.

4.
Cell Rep ; 41(6): 111614, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351402

RESUMO

Phosphatidylinositol 3-kinase catalytic subunit p110ß is involved in tumorigenesis and hemostasis. However, it remains unclear if p110ß also regulates platelet-mediated immune responses, which could have important consequences for immune modulation during anti-cancer treatment with p110ß inhibitors. Thus, we investigate how platelet p110ß affects inflammation and infection. Using a mouse model of Streptococcus pneumoniae-induced pneumonia, we find that both platelet-specific p110ß deficiency and pharmacologic inhibition of p110ß with TGX-221 exacerbate disease pathogenesis by preventing platelet-monocyte and neutrophil interactions, diminishing their infiltration and enhancing bacterial dissemination. Platelet p110ß mediates neutrophil phagocytosis of S. pneumoniae in vitro and curtails bacteremia in vivo. Genetic deficiency or inhibition of platelet p110ß also impairs macrophage recruitment in an independent model of sterile peritonitis. Our results demonstrate that platelet p110ß dysfunction exacerbates pulmonary infection by impeding leukocyte functions. Thereby, our findings provide important insights into the immunomodulatory potential of PI3K inhibitors in bacterial infection.


Assuntos
Pneumonia Pneumocócica , Humanos , Fosfatidilinositol 3-Quinases/genética , Plaquetas , Leucócitos , Inibidores de Fosfoinositídeo-3 Quinase , Streptococcus pneumoniae
5.
Front Cardiovasc Med ; 8: 779073, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34859078

RESUMO

Background: The fatal consequences of an infection with severe acute respiratory syndrome coronavirus 2 are not only caused by severe pneumonia, but also by thrombosis. Platelets are important regulators of thrombosis, but their involvement in the pathogenesis of COVID-19 is largely unknown. The aim of this study was to determine their functional and biochemical profile in patients with COVID-19 in dependence of mortality within 5-days after hospitalization. Methods: The COVID-19-related platelet phenotype was examined by analyzing their basal activation state via integrin αIIbß3 activation using flow cytometry and the proteome by unbiased two-dimensional differential in-gel fluorescence electrophoresis. In total we monitored 98 surviving and 12 non-surviving COVID-19 patients over 5 days of hospital stay and compared them to healthy controls (n = 12). Results: Over the observation period the level of basal αIIbß3 activation on platelets from non-surviving COVID-19 patients decreased compared to survivors. In line with this finding, proteomic analysis revealed a decrease in the total amount of integrin αIIb (ITGA2B), a subunit of αIIbß3, in COVID-19 patients compared to healthy controls; the decline was even more pronounced for the non-survivors. Consumption of the fibrin-stabilizing factor coagulation factor XIIIA (F13A1) was higher in platelets from COVID-19 patients and tended to be higher in non-survivors; plasma concentrations of the latter also differed significantly. Depending on COVID-19 disease status and mortality, increased amounts of annexin A5 (ANXA5), eukaryotic initiation factor 4A-I (EIF4A1), and transaldolase (TALDO1) were found in the platelet proteome and also correlated with the nasopharyngeal viral load. Dysregulation of these proteins may play a role for virus replication. ANXA5 has also been identified as an autoantigen of the antiphospholipid syndrome, which is common in COVID-19 patients. Finally, the levels of two different protein disulfide isomerases, P4HB and PDIA6, which support thrombosis, were increased in the platelets of COVID-19 patients. Conclusion: Platelets from COVID-19 patients showed significant changes in the activation phenotype, in the processing of the final coagulation factor F13A1 and the phospholipid-binding protein ANXA5 compared to healthy subjects. Additionally, these results demonstrate specific alterations in platelets during COVID-19, which are significantly linked to fatal outcome.

6.
Thromb Haemost ; 119(10): 1642-1654, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31370072

RESUMO

INTRODUCTION: Blood platelets are increasingly recognized as modulators of leukocyte effector functions in various pathologies including acute lung injury (ALI). ALI is a life-threatening disease, caused by damage to the alveolar epi- and endothelium. Excessive accumulation of leukocytes leads to severe lung inflammation, resulting in impaired lung function and hypoxemia. OBJECTIVE: Since leukocyte migration is modulated by activated platelets and phosphatidylinositol 3-kinase (PI3K) signaling is involved in platelet function, we aimed to elucidate the effect of PI3K on platelet-mediated immune responses. MATERIALS AND METHODS: We generated a mouse model with a platelet-specific deletion of p85α, the most important regulatory subunit of the class IA PI3K, and evaluated platelet function and platelet-leukocyte interactions. Moreover, we analyzed the impact of platelet-specific p85α gene deficiency during sterile peritonitis and acid-induced ALI. RESULTS: In vitro analyses of platelets revealed that lack of p85α led to decreased downstream signaling and diminished expression of surface activation markers, for example, CD62P and CD63, as well as reduced platelet aggregation. Moreover, platelet PI3K essentially mediated direct interactions of platelets with monocytes and neutrophils. In mice, platelet-specific p85α deficiency prevented leukocyte infiltration into the peritoneum and the bronchoalveolar compartment during sterile peritonitis and ALI, respectively. Additionally, the release of the inflammatory cytokine interleukin-12/23 was diminished in platelet p85α-deficient mice during ALI. In contrast to PI3K, neither overexpression nor depletion of platelet phosphatase and tensin homolog, the endogenous antagonist of PI3K, significantly modulated platelet function. CONCLUSION: Our data indicate a crucial role of platelet PI3K signaling for leukocyte extravasation upon inflammatory stimuli in various diseases models.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Leucócitos/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Plaquetas/metabolismo , Feminino , Deleção de Genes , Ácido Clorídrico , Hipóxia , Imunidade Inata , Inflamação/induzido quimicamente , Masculino , Megacariócitos/citologia , Camundongos , Selectina-P/metabolismo , Peritonite/metabolismo , Testes de Função Plaquetária , Edema Pulmonar/induzido quimicamente , Edema Pulmonar/metabolismo , Transdução de Sinais , Tetraspanina 30/metabolismo
7.
Oncotarget ; 8(1): 552-564, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27880939

RESUMO

The oncogenic potential of the transcriptional repressor Bcl-6 (B-cell lymphoma 6) was originally discovered in non-Hodgkin patients and the soluble Bcl-6 inhibitor 79-6 was developed to treat diffuse large B-cell lymphomas with aberrant Bcl-6 expression. Since we found Bcl-6 and its co-repressor BCoR (Bcl-6 interacting co-repressor) to be regulated in human microvascular endothelium by colorectal cancer cells, we investigated their function in sprouting angiogenesis which is central to tumor growth. Based on Bcl-6/BCoR gene silencing we found that the transcriptional repressor complex in fact constitutes an endogenous inhibitor of vascular sprouting by supporting the stalk cell phenotype: control of Notch target genes (HES1, HEY1, DLL4) and cell cycle regulators (cyclin A and B1). Thus, when endothelial cells were transiently transfected with Bcl-6 and/or BCoR siRNA, vascular sprouting was prominently induced. Comparably, when the soluble Bcl-6 inhibitor 79-6 was applied in the mouse retina model of physiological angiogenesis, endothelial sprouting and branching were significantly enhanced. To address the question whether clinical treatment with 79-6 might therefore have detrimental therapeutic effects by promoting tumor angiogenesis, mouse xenograft models of colorectal cancer and diffuse large B-cell lymphoma were tested. Despite a tendency to increased tumor vessel density, 79-6 therapy did not enhance tumor expansion. In contrast, growth of colorectal carcinomas was significantly reduced which is likely due to a combined 79-6 effect on cancer cells and tumor stroma. These findings may provide valuable information regarding the future clinical development of Bcl-6 inhibitors.


Assuntos
Células Endoteliais/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Ciclo Celular , Linhagem Celular , Proliferação de Células , Modelos Animais de Doenças , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Xenoenxertos , Humanos , Camundongos , Neoplasias/genética , Neovascularização Patológica , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-bcl-6/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-6/genética , RNA Mensageiro/genética , Receptores Notch/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais
8.
Sci Rep ; 6: 23034, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26971883

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease with limited treatment options. Additionally, the lack of a complete understanding of underlying immunological mechanisms underscores the importance of discovering novel options for therapeutic intervention. Since the PI3K/PTEN pathway in myeloid cells influences their effector functions, we wanted to elucidate how sustained PI3K activity induced by cell-type specific genetic deficiency of its antagonist PTEN modulates IPF, in a murine model of bleomycin-induced pulmonary fibrosis (BIPF). We found that myeloid PTEN deficient mice (PTEN(MyKO)), after induction of BIPF, exhibit increased TGF-ß1 activation, mRNA expression of pro-collagens and lysyl oxidase as well as augmented collagen deposition compared to wild-type littermates, leading to enhanced morbidity and decreased survival. Analysis of alveolar lavage and lung cell composition revealed that PTEN(MyKO) mice exhibit reduced numbers of macrophages and T-cells in response to bleomycin, indicating an impaired recruitment function. Interestingly, we found dysregulated macrophage polarization as well as elevated expression and release of the pro-fibrotic cytokines IL-6 and TNF-α in PTEN(MyKO) mice during BIPF. This might point to an uncontrolled wound healing response in which the inflammatory as well as tissue repair mechanisms proceed in parallel, thereby preventing resolution and at the same time promoting extensive fibrosis.


Assuntos
Citocinas/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Mediadores da Inflamação/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Animais , Bleomicina , Western Blotting , Colágeno/genética , Colágeno/metabolismo , Ativação Enzimática , Feminino , Expressão Gênica , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Macrófagos/classificação , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Mieloides/metabolismo , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Proteína-Lisina 6-Oxidase/genética , Proteína-Lisina 6-Oxidase/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA