Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(37): 20461-20468, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34197037

RESUMO

The improvement of rechargeable zinc/air batteries was a hot topic in recent years. Predominantly, the influence of water and additives on the structure of the Zn deposit and the possible dendrite formation were studied. However, the effect of the surface structure of the underlying substrate was not focused on in detail, yet. We now show the differences in electrochemical deposition of Zn onto Au(111) and Au(100) from the ionic liquid N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide. The fundamental processes were initially characterized via cyclic voltammetry and in situ scanning tunnelling microscopy. Bulk deposits were then examined using Auger electron spectroscopy and scanning electron microscopy. Different structures of Zn deposits are observed during the initial stages of electrocrystallisation on both electrodes, which reveals the strong influence of the crystallographic orientation on the metal deposition of zinc on gold.

2.
Angew Chem Int Ed Engl ; 60(42): 22783-22790, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34427031

RESUMO

While numerous reference electrodes suitable for aqueous electrolytes exist, there is no well-defined standard for non-aqueous electrolytes. Furthermore, reference electrodes are often large and do not meet the size requirements for small cells. In this work, we present a simple method for fabricating stable 3D-printed micro-reference electrodes. The prints are made from polyvinylidene fluoride, which is chemically inert in strong acids, bases, and commonly used non-aqueous solvents. We chose six different reference systems based on Ag, Cu, Zn, and Na, including three aqueous and three non-aqueous systems to demonstrate the versatility of the approach. Subsequently, we conducted cyclic voltammetry experiments and measured the potential difference between the aqueous homemade reference electrodes and a commercial Ag/AgCl-electrode. For the non-aqueous reference electrodes, we chose the ferrocene redox couple as an internal standard. From these measurements, we deduced that this new class of micro-reference electrodes is leak-tight and shows a stable electrode potential.

3.
Angew Chem Int Ed Engl ; 59(32): 13246-13252, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32250028

RESUMO

The growth of noble-metal single crystals via the flame fusion method was developed in the 1980s. Since then, there have been no major advancements to the technique until the recent development of the controlled-atmosphere flame fusion (CAFF) method to grow non-noble Ni single crystals. Herein, we demonstrate the generality of this method with the first preparation of fcc Cu as well as the first hcp and bcc single crystals of Co and Fe, respectively. The high quality of the single crystals was verified using scanning electron microscopy and Laue X-ray backscattering. Based on Wulff constructions, the equilibrium shapes of the single-crystal particles were studied, confirming the symmetry of the fcc, hcp, and bcc single-crystal lattices. The low cost of the CAFF method makes all kinds of high-quality non-noble single crystals independent of their lattice accessible for use in electrocatalysis, electrochemistry, surface science, and materials science.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA