Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Microbiol ; 48(1): 83-95, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34270375

RESUMO

Collagen is the most abundant structural protein in the body and the main component of the extracellular matrix of most tissues, including dentine and periodontal tissues. Despite the well-characterized role of collagen and specifically type-I collagen, as a ligand for host cells, its role as a substrate for bacterial adhesion and biofilm formation is less explored. Therefore, the purpose of this review is to discuss recent findings regarding the adhesion of oral bacteria to collagen surfaces and its role in the progression and severity of oral and systemic diseases. Initial oral colonizers such as streptococci have evolved collagen-binding proteins (cbp) that are important for the colonization of dentine and periodontal tissues. Also, periodontal pathogens such as Porphyromonas gingivalis and Tannerella forsythia utilise cbps for tissue sensing and subsequent invasion. The implications of bacteria-collagen coupling in the context of collagen biomaterials and regenerative dentistry approaches are also addressed. Furthermore, the importance of interdisciplinary techniques such as atomic force microscopy for the nanocharacterization of bacteria-collagen interactions is also considered. Overall, understanding the process of oral bacterial adhesion onto collagen is important for developing future therapeutic approaches against oral and systemic diseases, by modulating the early stages of biofilm formation.


Assuntos
Aderência Bacteriana , Biofilmes , Colágeno , Progressão da Doença , Humanos , Boca , Porphyromonas gingivalis
2.
J Microsc ; 288(3): 185-192, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35621144

RESUMO

Recent advances in atomic force microscopy (AFM) have allowed the characterisation of dental-associated biomaterials and biological surfaces with high resolution. In this context, the topography of dental enamel - the hardest mineralised tissue in the body - has been explored with AFM-based approaches at the microscale. With age, teeth are known to suffer changes that can impact their structural stability and function; however, changes in enamel structure because of ageing have not yet been explored with nanoscale resolution. Therefore, the aim of this exploratory work was to optimise an approach to characterise the ultrastructure of dental enamel and determine potential differences in topography, hydroxyapatite (HA) crystal size, and surface roughness at the nanoscale associated to ageing. For this, a total of six teeth were collected from human donors from which enamel specimens were prepared. By employing intermittent contact (AC mode) imaging, HA crystals were characterised in both transversal and longitudinal orientation (respect to surface plane) with high resolution in environmental conditions. The external enamel surface displayed the presence of a pellicle-like coating on its surface that was not observable on cleaned specimens. Acid-etching exposed crystals that were imaged and morphologically characterised in high resolution at the nanoscale in both the external and internal regions of enamel in older and younger specimens. Our results demonstrated important individual variations in HA crystal width and roughness parameters across the analysed specimens; however, an increase in surface roughness and decrease in HA width was observed for the pooled older external enamel group compared to younger specimens. Overall, high-resolution AFM was an effective approach for the qualitative and quantitative characterisation of human dental enamel ultrastructure. Future work should focus on exploring the ageing of dental enamel with increased sample sizes to compensate for individual differences as well as other potential confounding factors such as behavioural habits and mechanical forces.


Assuntos
Dente , Humanos , Idoso , Microscopia de Força Atômica/métodos , Durapatita , Esmalte Dentário , Propriedades de Superfície
3.
J Peripher Nerv Syst ; 25(1): 32-43, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31983073

RESUMO

The gold standard for peripheral nerve regeneration uses a sensory autograft to bridge a motor/sensory defect site. For motor nerves to regenerate, Schwann cells (SC) myelinate the newly grown axon. Sensory SCs have a reduced ability to produce myelin, partially explaining low success rates of autografts. This issue is masked in pre-clinical research by the excessive use of the rat sciatic nerve defect model, utilizing a mixed nerve with motor and sensory SCs. Aim of this study was to utilize extracorporeal shockwave treatment as a novel tool to influence SC phenotype. SCs were isolated from motor, sensory and mixed rat nerves and in vitro differences between them were assessed concerning initial cell number, proliferation rate, neurite outgrowth as well as ability to express myelin. We verified the inferior capacity of sensory SCs to promote neurite outgrowth and express myelin-associated proteins. Motor Schwann cells demonstrated low proliferation rates, but strongly reacted to pro-myelination stimuli. It is noteworthy for pre-clinical research that sciatic SCs are a strongly mixed culture, not representing one or the other. Extracorporeal shockwave treatment (ESWT), induced in motor SCs an increased proliferation profile, while sensory SCs gained the ability to promote neurite outgrowth and express myelin-associated markers. We demonstrate a strong phenotype commitment of sciatic, motor, and sensory SCs in vitro, proposing the experimental use of SCs from pure cultures to better mimic clinical situations. Furthermore we provide arguments for using ESWT on autografts to improve the regenerative capacity of sensory SCs.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Regeneração Nervosa/fisiologia , Nervos Periféricos/fisiologia , Células de Schwann/fisiologia , Animais , Proliferação de Células/fisiologia , Células Cultivadas , Fenótipo , Ratos , Ratos Sprague-Dawley
4.
J Exp Biol ; 222(Pt 20)2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31537653

RESUMO

Microvesicles are key players in cellular communication. As glandular secretions present a rich source of active exosomes, we hypothesized that exosome-like vesicles are present in Apis mellifera hypopharyngeal gland secretomal products (honey, royal jelly and bee pollen), and participate in their known antibacterial and pro-regenerative effects. We developed an isolation protocol based on serial centrifugation and ultracentrifugation steps and demonstrated the presence of protein-containing exosome-like vesicles in all three bee-derived products. Assessing their antibacterial properties, we found that exosome-like vesicles had bacteriostatic, bactericidal and biofilm-inhibiting effects on Staphylococcus aureus Furthermore, we demonstrated that mesenchymal stem cells (MSCs) internalize bee-derived exosome-like vesicles and that these vesicles influence the migration potential of the MSCs. In an in vitro wound-healing assay, honey and royal jelly exosome-like vesicles increased migration of human MSCs, demonstrating their inter-kingdom activity. In summary, we have discovered exosome-like vesicles as a new, active compound in bee pollen, honey and royal jelly.


Assuntos
Antibacterianos/farmacologia , Abelhas/metabolismo , Exossomos/metabolismo , Ácidos Graxos/química , Mel , Pólen/química , Regeneração/efeitos dos fármacos , Animais , Movimento Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Exossomos/efeitos dos fármacos , Humanos , Pólen/ultraestrutura
5.
Adv Exp Med Biol ; 1077: 3-17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357680

RESUMO

Laminins are major components of all basement membranes surrounding nerve or vascular tissues. In particular laminin-111, the prototype of the family, facilitates a large spectrum of fundamental cellular responses in all eukaryotic cells. Laminin-111 is a biomaterial frequently used in research, however it is primarily isolated from non-human origin or produced with time-intensive recombinant techniques at low yield.Here, we describe an effective method for isolating laminin-111 from human placenta, a clinical waste material, for various tissue engineering applications. By extraction with Tris-NaCl buffer combined with non-protein-denaturation ammonium sulfate precipitation and rapid tangential flow filtration steps, we could effectively isolate native laminin-111 within only 4 days. The resulting material was biochemically characterized using a combination of dot blot, SDS-PAGE, Western blot and HPLC-based amino acid analysis. Cytocompatibility studies demonstrated that the isolated laminin-111 promotes rapid and efficient adhesion of primary Schwann cells. In addition, the bioactivity of the isolated laminin-111 was demonstrated by (a) using the material as a substrate for outgrowth of NG 108-15 neuronal cell lines and (b) promoting the formation of interconnected vascular networks by GFP-expressing human umbilical vein endothelial cells.In summary, the isolation procedure of laminin-111 as described here from human placenta tissue, fulfills many demands for various tissue engineering and regenerative medicine approaches and therefore may represent a human alternative to various classically used xenogenic standard materials.


Assuntos
Laminina/metabolismo , Placenta/metabolismo , Medicina Regenerativa , Engenharia Tecidual , Linhagem Celular , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Laminina/isolamento & purificação , Gravidez , Células de Schwann
6.
Cytotherapy ; 19(9): 1079-1095, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28734678

RESUMO

BACKGROUND: Cell-based therapies with autologous adipose tissue-derived cells have shown great potential in several clinical studies in the last decades. The majority of these studies have been using the stromal vascular fraction (SVF), a heterogeneous mixture of fibroblasts, lymphocytes, monocytes/macrophages, endothelial cells, endothelial progenitor cells, pericytes and adipose-derived stromal/stem cells (ASC) among others. Although possible clinical applications of autologous adipose tissue-derived cells are manifold, they are limited by insufficient uniformity in cell identity and regenerative potency. METHODS: In our experimental set-up, low-energy extracorporeal shock wave therapy (ESWT) was performed on freshly obtained human adipose tissue and isolated adipose tissue SVF cells aiming to equalize and enhance stem cell properties and functionality. RESULTS: After ESWT on adipose tissue we could achieve higher cellular adenosine triphosphate (ATP) levels compared with ESWT on the isolated SVF as well as the control. ESWT on adipose tissue resulted in a significantly higher expression of single mesenchymal and vascular marker compared with untreated control. Analysis of SVF protein secretome revealed a significant enhancement in insulin-like growth factor (IGF)-1 and placental growth factor (PLGF) after ESWT on adipose tissue. DISCUSSION: Summarizing we could show that ESWT on adipose tissue enhanced the cellular ATP content and modified the expression of single mesenchymal and vascular marker, and thus potentially provides a more regenerative cell population. Because the effectiveness of autologous cell therapy is dependent on the therapeutic potency of the patient's cells, this technology might raise the number of patients eligible for autologous cell transplantation.


Assuntos
Tecido Adiposo/citologia , Tratamento por Ondas de Choque Extracorpóreas/métodos , Células-Tronco/citologia , Trifosfato de Adenosina/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Humanos , Imunofenotipagem , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Placentário/metabolismo , Células-Tronco/fisiologia , Células Estromais/citologia , Células Estromais/fisiologia
7.
Cytotherapy ; 18(6): 760-70, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27068763

RESUMO

BACKGROUND AIMS: As new approaches for peripheral nerve regeneration are sought, there is an increasing demand for native Schwann cells for in vitro testing and/or reimplantation. Extracorporeal shockwave treatment (ESWT) is an emergent technology in the field of regenerative medicine that has also recently been shown to improve peripheral nerve regeneration. METHODS: In this study, we elucidate the effects of ESWT on Schwann cell isolation and culture. Rat sciatic nerves were dissected and treated with ESWT, and Schwann cells were isolated and cultured for 15 passages. RESULTS: Single treatment of the whole nerve ex vivo led to significantly increased extracellular adenosinetriphosphate as an immediate consequence, and subsequently a number of effects on the culture were observed, starting with a significantly increased Schwann cell yield after isolation. In the ESWT group, the quality of culture, reflected in consistently higher purity (S100b, morphology), proliferation rate (5-bromo-2-deoxyuridine, population doublings per passage) and expression of regenerative phenotype-associated markers (P75, glial fibrillary acidic protein, c-Jun), was significantly improved. In contrast, the control group exhibited progressively senescent behavior, reflected in a decrease of proliferation, loss of specific markers and increase in P16(INK4A) expression. CONCLUSIONS: ESWT has beneficial effects on Schwann cell isolation and culture.


Assuntos
Ondas de Choque de Alta Energia/efeitos adversos , Regeneração Nervosa/fisiologia , Nervos Periféricos/citologia , Células de Schwann/citologia , Nervo Isquiático/citologia , Animais , Proliferação de Células , Separação Celular/métodos , Células Cultivadas , Proteína Glial Fibrilar Ácida/metabolismo , Fenótipo , Ratos
8.
J Mater Sci Mater Med ; 27(12): 188, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27817094

RESUMO

Schwann cells play a key role in peripheral nerve regeneration. Failure in sufficient formation of Büngner bands due to impaired Schwann cell proliferation has significant effects on the functional outcome after regeneration. Therefore, the growth substrate for Schwann cells should be considered with highest priority in any peripheral nerve tissue engineering approach. Due to its excellent biocompatibility silk fibroin has most recently attracted considerable interest as a biomaterial for use as conduit material in peripheral nerve regeneration. In this study we established a protocol to covalently bind collagen and laminin, which have been isolated from human placenta, to silk fibroin utilizing carbodiimide chemistry. Altered adhesion, viability and proliferation of Schwann cells were evaluated. A cell adhesion assay revealed that the functionalization with both, laminin or collagen, significantly improved Schwann cell adhesion to silk fibroin. Moreover laminin drastically accelerated adhesion. Schwann cell proliferation and viability assessed with BrdU and MTT assay, respectively, were significantly increased in the laminin-functionalized groups. The results suggest beneficial effects of laminin on both, cell adhesion as well as proliferative behaviour of Schwann cells. To conclude, the covalent tailoring of silk fibroin drastically enhances its properties as a cell substratum for Schwann cells, which might help to overcome current hurdles bridging long distance gaps in peripheral nerve injuries with the use of silk-based nerve guidance conduits.


Assuntos
Fibroínas/química , Placenta/química , Células de Schwann/citologia , Animais , Bombyx , Adesão Celular , Proliferação de Células , Sobrevivência Celular , Colágeno/química , Feminino , Regeneração Tecidual Guiada/métodos , Laminina/química , Masculino , Microscopia de Fluorescência , Regeneração Nervosa/efeitos dos fármacos , Gravidez , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Alicerces Teciduais/química
9.
Cells Tissues Organs ; 200(5): 287-99, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26372904

RESUMO

Tissue engineering approaches in nerve regeneration search for ways to support gold standard therapy (autologous nerve grafts) and to improve results by bridging nerve defects with different kinds of conduits. In this study, we describe electrospinning of aligned fibrin-poly(lactic-co-glycolic acid) (PLGA) fibers in an attempt to create a biomimicking tissue-like material seeded with Schwann cell-like cells (SCLs) in vitro for potential use as an in vivo scaffold. Rat adipose-derived stem cells (rASCs) were differentiated into SCLs and evaluated with flow cytometry concerning their differentiation and activation status [S100b, P75, myelin-associated glycoprotein (MAG), and protein 0 (P0)]. After receiving the proliferation stimulus forskolin, SCLs expressed S100b and P75; comparable to native, activated Schwann cells, while cultured without forskolin, cells switched to a promyelinating phenotype and expressed S100b, MAG, and P0. Human fibrinogen and thrombin, blended with PLGA, were electrospun and the alignment and homogeneity of the fibers were proven by scanning electron microscopy. Electrospun scaffolds were seeded with SCLs and the formation of Büngner-like structures in SCLs was evaluated with phalloidin/propidium iodide staining. Carrier fibrin gels containing rASCs acted as a self-shaping matrix to form a tubular structure. In this study, we could show that rASCs can be differentiated into activated, proliferating SCLs and that these cells react to minimal changes in stimulus, switching to a promyelinating phenotype. Aligned electrospun fibrin-PLGA fibers promoted the formation of Büngner-like structures in SCLs, which also rolled the fibrin-PLGA matrix into a tubular scaffold. These in vitro findings favor further in vivo testing.


Assuntos
Fibrina/metabolismo , Ácido Láctico/metabolismo , Regeneração Nervosa/fisiologia , Nervos Periféricos/fisiologia , Ácido Poliglicólico/metabolismo , Células de Schwann/citologia , Engenharia Tecidual , Alicerces Teciduais , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Masculino , Nervos Periféricos/citologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Engenharia Tecidual/métodos
10.
Cytotherapy ; 16(12): 1666-78, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25174738

RESUMO

BACKGROUND AIMS: Adipose-derived progenitor/stem cells (ASCs) are discussed as a promising candidate for various tissue engineering approaches. However, its applicability for the clinic is still difficult due to intra- and inter-donor heterogeneity and limited life span in vitro, influencing differentiation capacity as a consequence to decreased multipotency. METHODS: Extracorporeal shock wave treatment has been proven to be a suitable clinical tool to improve regeneration of a variety of tissues for several decades, whereas the mechanisms underlying these beneficial effects remain widely unknown. RESULTS: In this study we show that human and rat adipose derived stem cells respond strongly to repetitive shock wave treatment in vitro, resulting not only in maintenance and significant elevation of mesenchymal markers (CD73, CD90, CD105), but also in significantly increased differentiation capacity towards the osteogenic and adipogenic lineage as well as toward Schwann-cell like cells even after extended time in vitro, preserving multipotency of ASCs. CONCLUSIONS: ESWT might be a promising tool to improve ASC quality for cell therapy in various tissue engineering and regenerative medicine applications.


Assuntos
Antígenos de Diferenciação/biossíntese , Regulação da Expressão Gênica , Ondas de Choque de Alta Energia , Células-Tronco Multipotentes/metabolismo , Adulto , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Cultivadas , Feminino , Humanos , Masculino , Células-Tronco Multipotentes/citologia , Ratos , Ratos Sprague-Dawley
11.
Cell Tissue Bank ; 15(2): 227-39, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24166477

RESUMO

Human amniotic membrane (hAM) is a tissue containing cells with proven stem cell properties. In its decellularized form it has been successfully applied as nerve conduit biomaterial to improve peripheral nerve regeneration in injury models. We hypothesize that viable hAM without prior cell isolation can be differentiated towards the Schwann cell lineage to generate a possible alternative to commonly applied tissue engineering materials for nerve regeneration. For in vitro Schwann cell differentiation, biopsies of hAM of 8 mm diameter were incubated with a sequential order of neuronal induction and growth factors for 21 days and characterized for cellular viability and the typical glial markers glial fibrillary acidic protein (GFAP), S100ß, p75 and neurotrophic tyrosine kinase receptor (NTRK) using immunohistology. The secretion of the neurotrophic factors brain-derived neurotrophic factor (BDNF) and glial cell-derived neurotrophic factor (GDNF) was quantified by ELISA. The hAM maintained high viability, especially under differentiation conditions (90.2 % ± 41.6 day 14; 80.0 % ± 44.5 day 21 compared to day 0). Both, BDNF and GDNF secretion was up-regulated upon differentiation. The fresh membrane stained positive for GFAP and p75 and NTRK, which was strongly increased after culture in differentiation conditions. Especially the epithelial layer within the membrane exhibited a change in morphology upon differentiation forming a multi-layered epithelium with intense accumulations of the marker proteins. However, S100ß was expressed at equal levels and equal distribution in fresh and cultured hAM conditions. Viable hAM may be a promising alternative to present formulations used for peripheral nerve regeneration.


Assuntos
Âmnio/citologia , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Separação Celular , Células de Schwann/citologia , Âmnio/metabolismo , Células Cultivadas , Humanos , Regeneração/fisiologia , Células-Tronco/citologia
12.
Lab Chip ; 24(6): 1648-1657, 2024 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-38291999

RESUMO

Human dentin is a highly organized dental tissue displaying a complex microarchitecture consisting of micrometer-sized tubules encased in a mineralized type-I collagen matrix. As such, it serves as an important substrate for the adhesion of microbial colonizers and oral biofilm formation in the context of dental caries disease, including root caries in the elderly. Despite this issue, there remains a current lack of effective biomimetic in vitro dentin models that facilitate the study of oral microbial adhesion by considering the surface architecture at the micro- and nanoscales. Therefore, the aim of this study was to develop a novel in vitro microfabricated biomimetic dentin surface that simulates the complex surface microarchitecture of exposed dentin. For this, a combination of soft lithography microfabrication and biomaterial science approaches were employed to construct a micropitted PDMS substrate functionalized with mineralized type-I collagen. These dentin analogs were subsequently glycated with methylglyoxal (MGO) to simulate dentin matrix aging in vitro and analyzed utilizing an interdisciplinary array of techniques including atomic force microscopy (AFM), elemental analysis, and electron microscopy. AFM force-mapping demonstrated that the nanomechanical properties of the biomimetic constructs were within the expected biological parameters, and that mineralization was mostly predominated by hydroxyapatite deposition. Finally, dual-species biofilms of Streptococcus mutans and Candida albicans were grown and characterized on the biofunctionalized PDMS microchips, demonstrating biofilm-specific morphologic characteristics and confirming the suitability of this model for the study of early biofilm formation under controlled conditions. Overall, we expect that this novel biomimetic dentin model could serve as an in vitro platform to study oral biofilm formation or dentin-biomaterial bonding in the laboratory without the need for animal or human tooth samples in the future.


Assuntos
Cárie Dentária , Dentina , Animais , Humanos , Idoso , Dentina/química , Biomimética , Microtecnologia , Biofilmes , Streptococcus mutans , Materiais Biocompatíveis , Colágeno
13.
Acta Biomater ; 155: 182-198, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435437

RESUMO

The structural and functional properties of collagen are modulated by the presence of intramolecular and intermolecular crosslinks. Advanced Glycation End-products (AGEs) can produce intermolecular crosslinks by bonding the free amino groups of neighbouring proteins. In this research, the following hypothesis is explored: The accumulation of AGEs in collagen decreases its proteolytic degradation rates while increasing its stiffness. Fluorescence Lifetime Imaging (FLIM) and Fourier-transform infrared spectroscopy (FTIR) detect biochemical changes in collagen scaffolds during the glycation process. The accumulation of AGEs increases exponentially in the collagen scaffolds as a function of Methylglyoxal (MGO) concentration by performing autofluorescence measurement and competitive ELISA. Glycated scaffolds absorb water at a much higher rate confirming the direct affinity between AGEs and interstitial water within collagen fibrils. In addition, the topology of collagen fibrils as observed by Atomic Force Microscopy (AFM) is a lot more defined following glycation. The elastic modulus of collagen fibrils decreases as a function of glycation, whereas the elastic modulus of collagen scaffolds increases. Finally, the enzymatic degradation of collagen by bacterial collagenase shows a sigmoidal pattern with a much slower degradation rate in the glycated scaffolds. This study identifies unique variations in the properties of collagen following the accumulation of AGEs. STATEMENT OF SIGNIFICANCE: In humans, Advanced Glycation End-products (AGEs) are naturally produced as a result of aging process. There is an evident lack of knowledge in the basic science literature explaining the biomechanical impact of AGE-mediated crosslinks on the functional and structural properties of collagen at both the nanoscale (single fibrils) and mesoscale (bundles of fibrils). This research, demonstrates how it is possible to harness this natural phenomenon in vitro to enhance the properties of engineered collagen fibrils and scaffolds. This study identifies unique variations in the properties of collagen at nanoscale and mesoscale following accumulation of AGEs. In their approach, they investigate the unique properties conferred to collagen, namely enhanced water sorption, differential elastic modulus, and finally sigmoidal proteolytic degradation behavior.


Assuntos
Reação de Maillard , Engenharia Tecidual , Humanos , Produtos Finais de Glicação Avançada/metabolismo , Colágeno/química , Matriz Extracelular/metabolismo
14.
Mol Ther Nucleic Acids ; 31: 541-552, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36895953

RESUMO

Apis mellifera royal jelly (RJ) is a well-known remedy in traditional medicine around the world and its versatile effects range from antibacterial to anti-inflammatory properties and pro-regenerative properties. As a glandular product, RJ has been shown to contain a substantial number of extracellular vesicles (EVs), and, in this study, we aimed to investigate the extent of involvement of RJEVs in wound healing-associated effects. Molecular analysis of RJEVs verified the presence of exosomal markers such as CD63 and syntenin, and cargo molecules MRJP1, defensin-1, and jellein-3. Furthermore, RJEVs were demonstrated to modulate mesenchymal stem cell (MSC) differentiation and secretome, as well as decrease LPS-induced inflammation in macrophages by blocking the mitogen-activated protein kinase (MAPK) pathway. In vivo studies confirmed antibacterial effects of RJEVs and demonstrated an acceleration of wound healing in a splinted mouse model. This study suggests that RJEVs play a crucial role in the known effects of RJ by modulating the inflammatory phase and cellular response in wound healing. Transfer of RJ into the clinics has been impeded by the high complexity of the raw material. Isolating EVs from the raw RJ decreases the complexity while allowing standardization and quality control, bringing a natural nano-therapy one step closer to the clinics.

15.
Int J Nanomedicine ; 16: 4891-4900, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34321877

RESUMO

PURPOSE: Recently, our group found exosome-like extracellular vesicles (EVs) in Apis mellifera honey displaying strong antibacterial effects; however, the underlying mechanism is still not understood. Thus, the aim of this investigation was to characterize the molecular and nanomechanical properties of A. mellifera honey-derived EVs in order to elucidate the mechanisms behind their antibacterial effect, as well as to determine differential antibiofilm properties against relevant oral streptococci. METHODS: A. mellifera honey-derived EVs (HEc-EVs) isolated via ultracentrifugation were characterized with Western Blot and ELISA to determine the presence of specific exosomal markers and antibacterial cargo, and atomic force microscopy (AFM) was utilized to explore their ultrastructural and nanomechanical properties via non-destructive immobilization onto poly-L-lysine substrates. Furthermore, the effect of HEc-EVs on growth and biofilm inhibition of S. mutans was explored with microplate assays and compared to S. sanguinis. AFM was utilized to describe ultrastructural and nanomechanical alterations such as cell wall elasticity changes following HEc-EV exposure. RESULTS: Molecular characterization of HEc-EVs identified for the first time important conserved exosome markers such as CD63 and syntenin, and the antibacterial molecules MRJP1, defensin-1 and jellein-3 were found as intravesicular cargo. Nanomechanical characterization revealed that honey-derived EVs were mostly <150nm, with elastic modulus values in the low MPa range, comparable to EVs from other biological sources. Furthermore, incubating oral streptococci with EVs confirmed their antibacterial and antibiofilm capacities, displaying an increased effect on S. mutans compared to S. sanguinis. AFM nanocharacterization showed topographical and nanomechanical alterations consistent with membrane damage on S. mutans. CONCLUSION: Honey is a promising new source of highly active EVs with exosomal origin, containing a number of antibacterial peptides as cargo molecules. Furthermore, the differential effect of HEC-EVs on S. mutans and S. sanguinis may serve as a novel biofilm-modulating strategy in dental caries.


Assuntos
Exossomos , Mel , Animais , Antibacterianos/farmacologia , Biofilmes , Cárie Dentária , Proteínas Citotóxicas Formadoras de Poros , Streptococcus mutans
16.
Drug Deliv ; 27(1): 1308-1318, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32924637

RESUMO

Throughout the last decade, extracellular vesicles (EVs) have become increasingly popular in several areas of regenerative medicine. Recently, Apis mellifera royal jelly EVs (RJ EVs) were shown to display favorable wound healing properties such as stimulation of mesenchymal stem cell migration and inhibition of staphylococcal biofilms. However, the sustained and effective local delivery of EVs in non-systemic approaches - such as patches for chronic cutaneous wounds - remains an important challenge for the development of novel EV-based wound healing therapies. Therefore, the present study aimed to assess the suitability of type I collagen -a well-established biomaterial for wound healing - as a continuous delivery matrix. RJ EVs were integrated into collagen gels at different concentrations, where gels containing 2 mg/ml collagen were found to display the most stable release kinetics. Functionality of released RJ EVs was confirmed by assessing fibroblast EV uptake and migration in a wound healing assay. We could demonstrate reliable EV uptake into fibroblasts with a sustained pro-migratory effect for up to 7 d. Integrating fibroblasts into the RJ EV-containing collagen gel increased the contractile capacity of these cells, confirming availability of RJ EVs to fibroblasts within the collagen gel. Furthermore, EVs released from collagen gels were found to inhibit Staphylococcus aureus ATCC 29213 biofilm formation. Overall, our results suggest that type I collagen could be utilized as a reliable, reproducible release system to deliver functional RJ EVs for wound healing therapies.


Assuntos
Colágeno Tipo I/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Vesículas Extracelulares , Ácidos Graxos/administração & dosagem , Hidrogéis/administração & dosagem , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Colágeno Tipo I/síntese química , Relação Dose-Resposta a Droga , Vesículas Extracelulares/química , Ácidos Graxos/síntese química , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Hidrogéis/síntese química
17.
Cells ; 9(11)2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33203002

RESUMO

Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and Creutzfeldt-Jakob disease (CJD) are brain conditions affecting millions of people worldwide. These diseases are associated with the presence of amyloid-ß (Aß), alpha synuclein (α-Syn) and prion protein (PrP) depositions in the brain, respectively, which lead to synaptic disconnection and subsequent progressive neuronal death. Although considerable progress has been made in elucidating the pathogenesis of these diseases, the specific mechanisms of their origins remain largely unknown. A body of research suggests a potential association between host microbiota, neuroinflammation and dementia, either directly due to bacterial brain invasion because of barrier leakage and production of toxins and inflammation, or indirectly by modulating the immune response. In the present review, we focus on the emerging topics of neuroinflammation and the association between components of the human microbiota and the deposition of Aß, α-Syn and PrP in the brain. Special focus is given to gut and oral bacteria and biofilms and to the potential mechanisms associating microbiome dysbiosis and toxin production with neurodegeneration. The roles of neuroinflammation, protein misfolding and cellular mediators in membrane damage and increased permeability are also discussed.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Microbiota/fisiologia , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo
18.
Front Pharmacol ; 10: 1068, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620000

RESUMO

The diagnosis and management of pain is an everyday occurrence in dentistry, and its effective control is essential to ensure the wellbeing of patients. Most tooth-associated pain originates from the dental pulp, a highly vascularized and innervated tissue, which is encased within mineralized dentin. It plays a crucial role in the sensing of stimuli from the local environment, such as infections (i.e. dental caries) and traumatic injury, leading to a local inflammatory response and subsequently to an increase in intra-pulp pressure, activating nerve endings. However, thermal, chemical, and mechanical stimuli also have the ability to generate dental pulp pain, which presents mechanisms highly specific to this tissue and which have to be considered in pain management. Traditionally, the management of dental pulp pain has mostly been pharmacological, using non-steroidal anti-inflammatory drugs (NSAIDs) and opioids, or restorative (i.e. removal of dental caries), or a combination of both. Both research areas continuously present novel and creative approaches. This includes the modulation of thermo-sensitive transient receptor potential cation channels (TRP) by newly designed drugs in pharmacological research, as well as the use of novel biomaterials, stem cells, exosomes and physical stimulation to obtain pulp regeneration in regenerative medicine. Therefore, the aim of this review is to present an up-to-date account of causes underlying dental pain, novel treatments involving the control of pain and inflammation and the induction of pulp regeneration, as well as insights in pain in dentistry from the physiological, pharmacological, regenerative and clinical perspectives.

19.
Transl Res ; 210: 80-98, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30998903

RESUMO

Over the last decades exosomes have become increasingly popular in the field of medicine. While until recently they were believed to be involved in the removal of obsolete particles from the cell, it is now known that exosomes are key players in cellular communication, carrying source-specific molecules such as proteins, growth factors, miRNA/mRNA, among others. The discovery that exosomes are not bound to intraspecies interactions, but are also capable of interkingdom communication, has once again revolutionized the field of exosomes research. A rapidly growing body of literature is shedding light at novel sources and participation of exosomes in physiological or regenerative processes, infection and disease. For the purpose of this review we have categorized 6 sources of interest (animal products, body fluids, plants, bacteria, fungus and parasites) and linked their innate roles to the clinics and potential medical applications, such as cell-based therapy, diagnostics or drug delivery.


Assuntos
Exossomos/metabolismo , Animais , Líquidos Corporais/metabolismo , Humanos , Especificidade de Órgãos , Especificidade da Espécie
20.
Front Cell Neurosci ; 13: 182, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139050

RESUMO

To improve the outcome after autologous nerve grafting in the clinic, it is important to understand the limiting variables such as distinct phenotypes of motor and sensory Schwann cells. This study investigated the properties of phenotypically different autografts in a 6 mm femoral nerve defect model in the rat, where the respective femoral branches distally of the inguinal bifurcation served as homotopic, or heterotopic autografts. Axonal regeneration and target reinnervation was analyzed by gait analysis, electrophysiology, and wet muscle mass analysis. We evaluated regeneration-associated gene expression between 5 days and 10 weeks after repair, in the autografts as well as the proximal, and distal segments of the femoral nerve using qRT-PCR. Furthermore we investigated expression patterns of phenotypically pure ventral and dorsal roots. We identified highly significant differences in gene expression of a variety of regeneration-associated genes along the central - peripheral axis in healthy femoral nerves. Phenotypically mismatched grafting resulted in altered spatiotemporal expression of neurotrophic factor BDNF, GDNF receptor GFRα1, cell adhesion molecules Cadm3, Cadm4, L1CAM, and proliferation associated Ki67. Although significantly higher quadriceps muscle mass following homotopic nerve grafting was measured, we did not observe differences in gait analysis, and electrophysiological parameters between treatment paradigms. Our study provides evidence for phenotypic commitment of autologous nerve grafts after injury and gives a conclusive overview of temporal expression of several important regeneration-associated genes after repair with sensory or motor graft.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA