Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 12: 21, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26156627

RESUMO

BACKGROUND: Graphistrength (©) C100 multiwalled carbon nanotubes (MWCNT) provide superior electrical and mechanical properties for various applications. The evaluation of the intrinsic hazard properties of Graphistrength(©) C100 is an essential step for safe use. A general feature of multiwalled carbon nanotubes after inhalation or intratracheal exposures is the induction of an inflammatory reaction in the lungs sometimes associated with local genotoxic effects. METHODS: After investigating different parameters for the aerosol generation and performing a 5-day inhalation range finding study, male and female Wistar rats were exposed nose-only for 90 days to target concentrations of 0.05, 0.25 and 5.0 mg/m(3) air of Graphistrength (©) C100 and sacrificed 24 h and 90 days after the last exposure. Broncho-alveolar lavage fluid (BALF) was also collected and analyzed for inflammatory parameters. Twenty-four hours post-exposure, chromosomal aberrations in the bone marrow cells were evaluated by the micronucleus test and DNA damages in the lung, kidney and liver cells by both the standard and the human 8-oxoguanine DNA N-glycosylase 1 (hOGG1)-modified comet assay. All studies were performed according to the OECD test guidelines. RESULTS: An inflammatory lung reaction and the release of inflammatory factors in the BALF were observed in all rats exposed to 5.0 mg/m(3), associated with changes in the differential white blood cells counts. The slight changes in BALF parameters at 0.25 mg/m(3) recovered and signs of lung clearance of the MWCNT were observed. No pathological changes were observed on the pleura. Neither increase in the number of micronucleated polychromatic erythrocytes nor increase in percent DNA damage were observed at any concentration. CONCLUSIONS: Lung inflammation characteristic of an overload with insoluble particles was observed after a 90-day exposure to 5.0 mg/m(3) of Graphistrength (©) C100. Clear signs of clearance and recovery were observed at 0.25 mg/m(3). No genotoxicity was detected locally in lung and distally in bone marrow, liver and kidney. Therefore, Graphistrength (©) C100 appears of low concern in term of local and systemic genotoxicity and a No-Observed Adverse Effect Concentration (NOAEC) of 0.25 mg/m(3) (0.28 mg/m(3) as actual concentration) was established for the repeated-dose toxicity.


Assuntos
Ensaio Cometa , Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Testes para Micronúcleos , Nanotubos de Carbono/toxicidade , Pneumonia/induzido quimicamente , Aerossóis , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Dano ao DNA , DNA Glicosilases/metabolismo , Relação Dose-Resposta a Droga , Feminino , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Nível de Efeito Adverso não Observado , Tamanho da Partícula , Pneumonia/imunologia , Pneumonia/metabolismo , Pneumonia/patologia , Valor Preditivo dos Testes , Ratos Wistar , Medição de Risco , Fatores de Tempo
2.
Int J Toxicol ; 30(5): 466-77, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21868767

RESUMO

To support clinical development of S-nitrosoglutathione (GSNO) as a therapeutic agent, 28-day toxicology studies in rats and dogs were conducted. Rats (21-25/sex) and dogs (3-5/sex) were exposed for 4 hours or 1 hour, respectively, to inhaled GSNO (0, 3, 9.3, 19, and 28 mg/kg per d in rats and 0, 4.6, 9.0, and 16.2 mg/kg per d in dogs) or vehicle daily via a nebulizer. Animals were monitored throughout the 28-day dosing period and during a postexposure recovery period. Complete necropsy and tissue examinations were performed. Experimental end points included clinical pathology, toxicokinetics, and immunotoxicology. No biologically significant adverse findings were noted in either species, and the no observed adverse effect levels (NOAELs) under these conditions were the highest achieved doses (28 and 16.2 mg/kg per d in rats and dogs, respectively). These data demonstrate that GSNO is well tolerated in rodents and dogs and predict a favorable toxicity profile in humans, thus supporting future clinical development of GSNO or closely related compounds.


Assuntos
S-Nitrosoglutationa/farmacocinética , S-Nitrosoglutationa/toxicidade , Testes de Toxicidade/métodos , Administração por Inalação , Animais , Disponibilidade Biológica , Cães , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Determinação de Ponto Final , Eritrócitos , Feminino , Masculino , Nitratos/sangue , Nitratos/farmacocinética , Nitratos/urina , Nível de Efeito Adverso não Observado , Ratos , Ratos Wistar , Ovinos
3.
J Toxicol Pathol ; 24(3): 149-62, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22272055

RESUMO

Inhalation of vanadium pentoxide clearly increases the incidence of alveolar/bronchiolar neoplasms in male and female B6C3F1 mice at all concentrations tested (1, 2 or 4 mg/m(3)), whereas responses in F344/N rats was, at most, ambiguous. While vanadium pentoxide is mutagenic in vitro and possibly in vivo in mice, this does not explain the species or site specificity of the neoplastic response. A nose-only inhalation study was conducted in female B6C3F1 mice (0, 0.25, 1 and 4 mg/m(3), 6 h/day for 16 days) to explore histopathological, biochemical (α-tocopherol, glutathione and F2-isoprostane) and genetic (comet assays and 9 specific DNA-oxo-adducts) changes in the lungs. No treatment related histopathology was observed at 0.25 mg/m(3). At 1 and 4 mg/m(3), exposure-dependent increases were observed in lung weight, alveolar histiocytosis, sub-acute alveolitis and/or granulocytic infiltration and a generally time-dependent increased cell proliferation rate of histiocytes. Glutathione was slightly increased, whereas there were no consistent changes in α-tocopherol or 8-isoprostane F2α. There was no evidence for DNA strand breakage in lung or BAL cells, but there was an increase in 8-oxodGuo DNA lesions that could have been due to vanadium pentoxide induction of the lesions or inhibition of repair of spontaneous lesions. Thus, earlier reports of histopathological changes in the lungs after inhalation of vanadium pentoxide were confirmed, but no evidence has yet emerged for a genotoxic mode of action. Evidence is weak for oxidative stress playing any role in lung carcinogenesis at the lowest effective concentrations of vanadium pentoxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA