Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Exp Immunol ; 217(1): 15-30, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642912

RESUMO

B and T cells collaborate to drive autoimmune disease (AID). Historically, B- and T-cell (B-T cell) co-interaction was targeted through different pathways such as alemtuzumab, abatacept, and dapirolizumab with variable impact on B-cell depletion (BCD), whereas the majority of patients with AID including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and organ transplantation benefit from targeted BCD with anti-CD20 monoclonal antibodies such as rituximab, ocrelizumab, or ofatumumab. Refractory AID is a significant problem for patients with incomplete BCD with a greater frequency of IgD-CD27+ switched memory B cells, CD19+CD20- B cells, and plasma cells that are not directly targeted by anti-CD20 antibodies, whereas most lymphoid tissue plasma cells express CD19. Furthermore, B-T-cell collaboration is predominant in lymphoid tissues and at sites of inflammation such as the joint and kidney, where BCD may be inefficient, due to limited access to key effector cells. In the treatment of cancer, chimeric antigen receptor (CAR) T-cell therapy and T-cell engagers (TCE) that recruit T cells to induce B-cell cytotoxicity have delivered promising results for anti-CD19 CAR T-cell therapies, the CD19 TCE blinatumomab and CD20 TCE such as mosunetuzumab, glofitamab, or epcoritamab. Limited evidence suggests that anti-CD19 CAR T-cell therapy may be effective in managing refractory AID whereas we await evaluation of TCE for use in non-oncological indications. Therefore, here, we discuss the potential mechanistic advantages of novel therapies that rely on T cells as effector cells to disrupt B-T-cell collaboration toward overcoming rituximab-resistant AID.


Assuntos
Doenças Autoimunes , Linfócitos B , Imunoterapia Adotiva , Linfócitos T , Humanos , Doenças Autoimunes/imunologia , Doenças Autoimunes/terapia , Linfócitos B/imunologia , Linfócitos T/imunologia , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/imunologia , Rituximab/uso terapêutico , Comunicação Celular/imunologia , Animais
2.
J Pharmacol Exp Ther ; 376(3): 322-329, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33288523

RESUMO

P-glycoprotein (P-gp) is a major blood-brain barrier (BBB) efflux transporter. In vitro approaches, including bidirectional efflux ratio (ER), are used to measure P-gp-mediated transport, but findings can be inconsistent across models. We propose a novel, more physiologically relevant, in vitro model: unidirectional apical efflux ratio (AP-ER)-a ratio of permeability rates at the apical side of the BBB with and without P-gp inhibitor. To test our approach, ER and AP-ER were calculated for 3227 structurally diverse compounds in porcine kidney epithelial cells (LLC-PK1) overexpressing human or mouse P-gp and classified based on their passive transcellular P-gp permeability or charged properties. In vivo rat infusion studies were performed for selected compounds with high ER but low AP-ER. One-third of the 3227 compounds had bidirectional ER that was much higher than AP-ER; very few had AP-ER higher than ER. Compounds with a large difference between AP-ER and ER were typically basic compounds with low-to-medium passive permeability and high lipophilicity and/or amphiphilicity, leading to strong membrane binding. Outcomes in the human model were similar to those in mice, suggesting AP-ER/ER ratios may be conserved for at least two species. AP-ER predicted measured cerebrospinal fluid (CSF) concentration better than ER for the five compounds tested in our in vivo rat infusion studies. We report superior estimations of the CSF concentrations of the compounds when based on less resource-intensive AP-ER versus classic ER. Better understanding of the properties leading to high P-gp-mediated efflux in vivo could support more efficient brain-penetrant compound screening and optimization. SIGNIFICANCE STATEMENT: To address inconsistencies associated with the historical, bidirectional efflux ratio (ER) calculation of P-glycoprotein-mediated transport, we propose to use the novel, more physiologically relevant, unidirectional apical efflux ratio (AP-ER) model. In vitro experiments suggested that compounds with strong membrane binding showed the largest difference between AP-ER and ER, and in vivo infusion studies showed that AP-ER predicted cerebrospinal fluid concentrations of compounds better than ER; outcomes in the human model were similar to those in mice.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/líquido cefalorraquidiano , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Descoberta de Drogas , Animais , Testes de Química Clínica , Avaliação Pré-Clínica de Medicamentos , Transporte Proteico , Ratos
3.
Drug Metab Dispos ; 47(12): 1443-1456, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31748266

RESUMO

For therapeutic proteins, the currently established standard development path generally does not foresee biotransformation studies by default because it is well known that the clearance of therapeutic proteins proceeds via degradation to small peptides and individual amino acids. In contrast to small molecules, there is no general need to identify enzymes involved in biotransformation because this information is not relevant for drug-drug interaction assessment and for understanding the clearance of a therapeutic protein. Nevertheless, there are good reasons to embark on biotransformation studies, especially for complex therapeutic proteins. Typical triggers are unexpected rapid clearance, species differences in clearance not following the typical allometric relationship, a mismatch in the pharmacokinetics/pharmacodynamics (PK/PD) relationship, and the need to understand observed differences between the results of multiple bioanalytical methods (e.g., total vs. target-binding competent antibody concentrations). Early on during compound optimization, knowledge on protein biotransformation may help to design more stable drug candidates with favorable in vivo PK properties. Understanding the biotransformation of a therapeutic protein may also support designing and understanding the bioanalytical assay and ultimately the PK/PD assessment. Especially in cases where biotransformation products are pharmacologically active, quantification and assessment of their contribution to the overall pharmacological effect can be important for establishing a PK/PD relationship and extrapolation to humans. With the increasing number of complex therapeutic protein formats, the need for understanding the biotransformation of therapeutic proteins becomes more urgent. This article provides an overview on biotransformation processes, proteases involved, strategic considerations, regulatory guidelines, literature examples for in vitro and in vivo biotransformation, and technical approaches to study protein biotransformation. SIGNIFICANCE STATEMENT: Understanding the biotransformation of complex therapeutic proteins can be crucial for establishing a pharmacokinetic/pharmacodynamic relationship. This article will highlight scientific, strategic, regulatory, and technological features of protein biotransformation.


Assuntos
Preparações Farmacêuticas/metabolismo , Proteínas/farmacocinética , Bibliotecas de Moléculas Pequenas/farmacocinética , Animais , Biotransformação , Interações Medicamentosas , Humanos , Preparações Farmacêuticas/administração & dosagem , Proteínas/administração & dosagem , Proteínas/farmacologia , Bibliotecas de Moléculas Pequenas/administração & dosagem , Bibliotecas de Moléculas Pequenas/farmacologia
4.
Mol Pharm ; 13(2): 586-98, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26674605

RESUMO

Drug absorption is a complex process involving dissolution and precipitation, along with other kinetic processes. The purpose of this work was to (1) establish an in vitro methodology to study dissolution and precipitation in early stages of drug development where low compound consumption and high throughput are necessary, (2) develop a mathematical model for a mechanistic explanation of generated in vitro dissolution and precipitation data, and (3) extrapolate in vitro data to in vivo situations using physiologically based models to predict oral drug absorption. Small-scale pH-shift studies were performed in biorelevant media to monitor the precipitation of a set of poorly soluble weak bases. After developing a dissolution-precipitation model from this data, it was integrated into a simplified, physiologically based absorption model to predict clinical pharmacokinetic profiles. The model helped explain the consequences of supersaturation behavior of compounds. The predicted human pharmacokinetic profiles closely aligned with the observed clinical data. In summary, we describe a novel approach combining experimental dissolution/precipitation methodology with a mechanistic model for the prediction of human drug absorption kinetics. The approach unifies the dissolution and precipitation theories and enables accurate predictions of in vivo oral absorption by means of physiologically based modeling.


Assuntos
Cloridrato de Erlotinib/farmacocinética , Absorção Gastrointestinal/efeitos dos fármacos , Modelos Biológicos , Permeabilidade/efeitos dos fármacos , Administração Oral , Simulação por Computador , Cloridrato de Erlotinib/administração & dosagem , Humanos , Cinética , Distribuição Tecidual
5.
Xenobiotica ; 46(6): 483-94, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26405846

RESUMO

1. In recent years, the minipig is increasingly used as a test species in non-clinical assessment of drug candidates. While there is good scientific evidence available concerning cytochrome P450-mediated metabolism in minipig, the knowledge of other metabolic pathways is more limited. 2. The aim of this study was to provide an understanding of when, why, and how drug metabolism in minipig differs from other species commonly used in non-clinical studies. In-house cross-species metabolite profile comparisons in hepatocytes and microsomes of 38 Roche development compounds were retrospectively analyzed to compare the metabolism among minipig, human, rat, dog, monkey, rabbit and mouse. 3. A significant contributor to the elevated metabolism observed for certain compounds in minipig was identified as amide hydrolysis. The hepatic amide hydrolysis activity in minipig was further investigated in subcellular liver fractions and a structure-activity relationship was established. When structural motifs according to the established SAR are excluded, coverage of major human metabolic pathways was shown to be higher in minipig than in dog, and only slightly lower than in cynomolgus monkey. 4. A strategy is presented for early identification of drug compounds which might not be suited to further investigation in minipig due to excessive hydrolytic metabolism.


Assuntos
Amidas/metabolismo , Preparações Farmacêuticas/metabolismo , Amidas/química , Animais , Western Blotting , Carboxilesterase/metabolismo , Celecoxib/metabolismo , Hepatócitos/metabolismo , Humanos , Hidrólise , Fígado/metabolismo , Metaboloma , Microssomos Hepáticos/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade , Frações Subcelulares/metabolismo , Suínos , Porco Miniatura
6.
Mol Pharm ; 12(12): 4529-41, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26560069

RESUMO

The unbound drug concentration-effect relationship in brain is a key aspect in CNS drug discovery and development. In this work, we describe an in vitro high-throughput distribution assay between an aqueous buffer and a microemulsion of porcine brain polar lipids (BPL). The derived distribution coefficient LogDBPL was applied to the prediction of unbound drug concentrations in brain (Cu,b) and nonspecific binding to brain tissue. The in vivo relevance of the new assay was assessed for a large set of proprietary drug candidates and CNS drugs by (1) comparing observed compound concentrations in rat CSF with Cu,b calculated using the LogDBPL assay in combination with total drug brain concentrations, (2) comparing Cu,b derived from LogDBPL and total drug brain concentrations to Cu,b estimated using in vitro P-glycoprotein efflux ratio data and unbound drug plasma levels, and (3) comparing tissue nonspecific binding data from human brain autoradiography studies for 17 PET tracer candidates to distribution in BPL. In summary, the LogDBPL assay provides a predicted drug fraction unbound in brain tissue that is nearly identical to brain homogenate equilibrium dialysis with an estimation of in vivo Cu,b that is superior to LogD in octanol. LogDBPL complements the approach for predicting Cu,b based on in vitro P-glycoprotein efflux ratio and in vivo unbound plasma concentration and stands as a fast and cost-effective tool for nonspecific brain binding optimization of PET ligand candidates.


Assuntos
Bioensaio/métodos , Encéfalo/metabolismo , Fármacos do Sistema Nervoso Central/metabolismo , Lipídeos/fisiologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Wistar
7.
Bioorg Med Chem Lett ; 23(5): 1177-81, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23380378

RESUMO

A series of highly potent & selective adamantane derived CB2 agonists was identified in a high-throughput screen. A SAR was established and physicochemical properties were significantly improved. This was accompanied by potency of the compounds on the Q63R variant and varying ß-arrestin data which will support the insight into their relevance for the in vivo situation.


Assuntos
Adamantano/análogos & derivados , Agonistas de Receptores de Canabinoides/química , Agonistas de Receptores de Canabinoides/farmacologia , Receptor CB2 de Canabinoide/agonistas , Adamantano/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
8.
Drug Metab Dispos ; 40(8): 1603-10, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22596220

RESUMO

Beagle dogs are widely used in preclinical pharmacokinetic, safety, and formulation studies. However, little is known about intestinal and hepatic distribution of major enzymes and transporters involved in oral absorption and presystemic drug metabolism. We characterized mRNA levels of CYP3A12, CYP3A26, CYP2D15, UGT1A6, ABCB1 (MDR1), ABCC1 (MRP1), ABCG2 (BCRP), SLC15A1 (PEPT1), and SLC22A1 (OCT1) in dog liver and along the intestine by real-time quantitative reverse transcription-polymerase chain reaction. Tissue protein levels of CYP2D15, MDR1, and PEPT1 were obtained by Western blot. Gene distribution and expression variability was statistically described by a generalized additive mixed model smoothing function and correspondence analysis. Results were compared with the expression pattern known for the human orthologs. Hepatic mRNA levels for metabolic enzymes were generally higher than those for membrane transporters, whereas in the intestine the opposite was observed. Hepatic mRNA levels followed the order CYP2D15 > UGT1A6 ≈ CYP3A26 > ABCB1 ≈ SLC15A1 ≈ SLC22A1 > ABCG2 > ABCC1 ≈ CYP3A12. Along the gut, the genes were differentially distributed with greatest expression in duodenum/upper jejunum (ABCG2), middle jejunum (ABCB1 and SLC15A1), or in cecum/colon (ABCC1 and CYP2D15). CYP3A12, CYP3A26, SLC22A1, and UGT1A6 had a rather uniform expression. Intestinal mRNA profiles of CYP2D15, ABCB1, and SLC15A1 correlated with the respective protein levels. Canine CYP3A12/26, CYP2D15, and ABCB1 colonic distributions differed from those of human orthologs, whereas UGT1A6, ABCC1, ABCG2, SLC15A1, and SLC22A1 were comparable to those of humans in both small and large intestine. We aim to apply these data to better interpret pharmacokinetic studies in dogs with respect to their human relevance.


Assuntos
Perfilação da Expressão Gênica , Intestinos/enzimologia , Fígado/enzimologia , Animais , Cães , Feminino , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Masculino , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Drug Metab Dispos ; 40(8): 1556-65, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22584254

RESUMO

It was reported that oseltamivir (Tamiflu) absorption was mediated by human peptide transporter (hPEPT) 1. Understanding the exact mechanism(s) of absorption is important in the context of drug-drug and diet-drug interactions. Hence, we investigated the mechanism governing the intestinal absorption of oseltamivir and its active metabolite (oseltamivir carboxylate) in wild-type [Chinese hamster ovary (CHO)-K1] and hPEPT1-transfected cells (CHO-PEPT1), in pharmacokinetic studies in juvenile and adult rats, and in healthy volunteers. In vitro cell culture studies showed that the intracellular accumulation of oseltamivir and its carboxylate into CHO-PEPT1 and CHO-K1 was always similar under a variety of experimental conditions, demonstrating that these compounds are not substrates of hPEPT1. Furthermore, neither oseltamivir nor its active metabolite was capable of inhibiting Gly-Sar uptake in CHO-PEPT1 cells. In vivo pharmacokinetic studies in juvenile and adult rats showed that the disposition of oseltamivir and oseltamivir carboxylate, after oral administration of oseltamivir, was sensitive to the feed status but insensitive to the presence of milk and Gly-Sar. Moreover, oseltamivir and oseltamivir carboxylate exhibited significantly higher exposure in rats under fasted conditions than under fed conditions. In humans, oral dosing after a high-fat meal resulted in a statistically significant but moderate lower exposure than after an overnight fasting. This change has no clinical implications. Taken together, the results do not implicate either rat Pept1 or hPEPT1 in the oral absorption of oseltamivir.


Assuntos
Antivirais/farmacocinética , Mucosa Intestinal/metabolismo , Oseltamivir/farmacocinética , Simportadores/fisiologia , Animais , Células CHO , Cricetinae , Cricetulus , Técnicas In Vitro , Masculino , Transportador 1 de Peptídeos , Ratos , Ratos Sprague-Dawley
11.
Xenobiotica ; 41(8): 701-11, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21521079

RESUMO

The bile duct-cannulated (BDC) rat is a standard animal model used in ADME experiments. The aim of this study was to investigate post-surgical alterations that are relevant to ADME investigations in BDC rats compared with sham- and non-operated animals. Water and food intake was reduced in the animals' post-surgery. This led to a lower body weight in operated animals. In BDC animals, aspartate aminotransferase (AST) levels in plasma were transiently elevated and total bile acid levels were reduced. Alpha(1)-acid glycoprotein (AGP) in plasma and the concentration of bile components in bile were elevated. Histopathology showed inflammation in the area of the cannulation between the liver and the small intestine. A microarray-based gene expression and RTq-PCR analysis identified altered expression for several genes involved in drug disposition including the down-regulation of cytochrome P450 enzymes. This led to reduced cytochrome P450 content in the liver and lower metabolic activity in microsomes from BDC and sham-operated rats compared with naïve animals. The results of the study suggest that the post-surgical inflammation leads to physiological changes relevant for drug absorption and disposition. These alterations should be accounted for in the interpretation of ADME studies in BDC animals.


Assuntos
Ductos Biliares/cirurgia , Farmacocinética , Animais , Aspartato Aminotransferases/sangue , Bile/metabolismo , Cateterismo , Sistema Enzimático do Citocromo P-450/metabolismo , Masculino , Modelos Animais , Análise Serial de Proteínas , Ratos , Ratos Wistar
12.
Adv Sci (Weinh) ; 7(13): 2000323, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32670763

RESUMO

A functional, human, multiorgan, pumpless, immune system-on-a-chip featuring recirculating THP-1 immune cells with cardiomyocytes, skeletal muscle, and liver in separate compartments in a serum-free medium is developed. This in vitro platform can emulate both a targeted immune response to tissue-specific damage, and holistic proinflammatory immune response to proinflammatory compound exposure. The targeted response features fluorescently labeled THP-1 monocytes selectively infiltrating into an amiodarone-damaged cardiac module and changes in contractile force measurements without immune-activated damage to the other organ modules. In contrast to the targeted immune response, general proinflammatory treatment of immune human-on-a-chip systems with lipopolysaccharide (LPS) and interferon-γ (IFN-γ) causes nonselective damage to cells in all three-organ compartments. Biomarker analysis indicates upregulation of the proinflammation cytokines TNF-α, IL-6, IL-10, MIP-1, MCP-1, and RANTES in response to LPS + IFN-γ treatment indicative of the M1 macrophage phenotype, whereas amiodarone treatment only leads to an increase in the restorative cytokine IL-6 which is a marker for the M2 phenotype. This system can be used as an alternative to humanized animal models to determine direct immunological effects of biological therapeutics including monoclonal antibodies, vaccines, and gene therapies, and the indirect effects caused by cytokine release from target tissues in response to a drug's pharmacokinetics (PK)/pharmacodynamics (PD) profile.

13.
Sci Transl Med ; 11(497)2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217335

RESUMO

A pumpless, reconfigurable, multi-organ-on-a-chip system containing recirculating serum-free medium can be used to predict preclinical on-target efficacy, metabolic conversion, and measurement of off-target toxicity of drugs using functional biological microelectromechanical systems. In the first configuration of the system, primary human hepatocytes were cultured with two cancer-derived human bone marrow cell lines for antileukemia drug analysis in which diclofenac and imatinib demonstrated a cytostatic effect on bone marrow cancer proliferation. Liver viability was not affected by imatinib; however, diclofenac reduced liver viability by 30%. The second configuration housed a multidrug-resistant vulva cancer line, a non-multidrug-resistant breast cancer line, primary hepatocytes, and induced pluripotent stem cell-derived cardiomyocytes. Tamoxifen reduced viability of the breast cancer cells only after metabolite generation but did not affect the vulva cancer cells except when coadministered with verapamil, a permeability glycoprotein inhibitor. Both tamoxifen alone and coadministration with verapamil produced off-target cardiac effects as indicated by a reduction of contractile force, beat frequency, and conduction velocity but did not affect viability. These systems demonstrate the utility of a human cell-based in vitro culture system to evaluate both on-target efficacy and off-target toxicity for parent drugs and their metabolites; these systems can augment and reduce the use of animals and increase the efficiency of drug evaluations in preclinical studies.


Assuntos
Antineoplásicos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Diclofenaco/farmacologia , Humanos , Mesilato de Imatinib/farmacologia , Dispositivos Lab-On-A-Chip , Tamoxifeno/farmacologia , Verapamil/farmacologia
14.
J Med Chem ; 61(22): 10106-10115, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30398862

RESUMO

Binding of drugs to ocular melanin is a prominent biological phenomenon that affects the local pharmacokinetics and pharmacodynamics in the eye. In this work, we report on the development of in vitro and in silico tools for an early assessment and prediction of melanin binding properties of small molecules. A robust high-throughput assay has been established to study the binding of large sets of compounds to melanin. The extremely randomized trees approach was used to develop an in silico model able to predict the extent of melanin binding from the molecular properties of the compounds. After the last iteration of the model, strong melanin binders could prospectively be identified with 91% accuracy. On the basis of in vitro data generated for approximately 3400 chemically diverse drug-like small molecules, pronounced correlations were observed between the extent of melanin binding and the basicity, lipophilicity, and aromaticity of the compounds.


Assuntos
Desenho de Fármacos , Melaninas/metabolismo , Bibliotecas de Moléculas Pequenas/metabolismo , Fenômenos Químicos , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Oftalmologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
15.
Mol Ther Nucleic Acids ; 10: 45-54, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499955

RESUMO

The successful development of high-affinity gapmer antisense oligonucleotide (ASO) therapeutics containing locked nucleic acid (LNA) or constrained ethyl (cEt) substitutions has been hampered by the risk of hepatotoxicity. Here, we present an in vitro approach using transfected mouse fibroblasts to predict the potential hepatic liabilities of LNA-modified ASOs (LNA-ASOs), validated by assessing 236 different LNA-ASOs with known hepatotoxic potential. This in vitro assay accurately reflects in vivo findings and relates hepatotoxicity to RNase H1 activity, off-target RNA downregulation, and LNA-ASO-binding affinity. We further demonstrate that the hybridization-dependent toxic potential of LNA-ASOs is also evident in different cell types from different species, which indicates probable translatability of the in vitro results to humans. Additionally, we show that the melting temperature (Tm) of LNA-ASOs maintained below a threshold level of about 55°C greatly diminished the hepatotoxic potential. In summary, we have established a sensitive in vitro screening approach for assessing the hybridization-dependent toxic potential of LNA-ASOs, enabling prioritization of candidate molecules in drug discovery and early development.

16.
J Med Chem ; 61(8): 3370-3388, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29590751

RESUMO

Macrocyclic inhibitors of rhodesain (RD), a parasitic cysteine protease and drug target for the treatment of human African trypanosomiasis, have shown low metabolic stability at the macrocyclic ether bridge. A series of acyclic dipeptidyl nitriles was developed using structure-based design (PDB ID: 6EX8 ). The selectivity against the closely related cysteine protease human cathepsin L (hCatL) was substantially improved, up to 507-fold. In the S2 pocket, 3,4-dichlorophenylalanine residues provided high trypanocidal activities. In the S3 pocket, aromatic residues provided enhanced selectivity against hCatL. RD inhibition ( Ki values) and in vitro cell-growth of Trypanosoma brucei rhodesiense (IC50 values) were measured in the nanomolar range. Triazole-based ligands, obtained by a safe, gram-scale flow production of ethyl 1 H-1,2,3-triazole-4-carboxylate, showed excellent metabolic stability in human liver microsomes and in vivo half-lives of up to 1.53 h in mice. When orally administered to infected mice, parasitaemia was reduced but without complete removal of the parasites.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/uso terapêutico , Dipeptídeos/uso terapêutico , Nitrilas/uso terapêutico , Triazóis/uso terapêutico , Tripanossomicidas/uso terapêutico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/farmacocinética , Inibidores de Cisteína Proteinase/toxicidade , Dipeptídeos/síntese química , Dipeptídeos/farmacocinética , Dipeptídeos/toxicidade , Desenho de Fármacos , Feminino , Humanos , Leishmania donovani/efeitos dos fármacos , Ligantes , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Nitrilas/síntese química , Nitrilas/farmacocinética , Nitrilas/toxicidade , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/química , Ratos , Relação Estrutura-Atividade , Suínos , Triazóis/síntese química , Triazóis/farmacocinética , Triazóis/toxicidade , Tripanossomicidas/síntese química , Tripanossomicidas/farmacocinética , Tripanossomicidas/toxicidade , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos
17.
Toxicol Sci ; 163(2): 409-419, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28329870

RESUMO

A number of drugs can cause precipitates within renal tubules leading to crystal nephropathy. Crystal nephropathy is usually an exposure-related finding and is not uncommon in preclinical studies, where high doses are tested. An understanding of the nature of precipitates is important for human risk assessment and further development. Our aim was to investigate the ability of various imaging techniques to detect the presence of drugs or metabolites in renal crystals. We applied matrix-assisted laser desorption/ionization-Fourier transform ion cyclotron resonance mass spectrometry (MALDI-FTICR MS) imaging, Raman and infrared microspectroscopy, scanning electron microscopy coupled with energy dispersive X-ray (SEM/EDX) spectroscopy and standard histopathology to cases of drug-induced crystal nephropathy, induced in rodents and primates by 4 compounds. MALDI-FTICR MS imaging enabled the identification of the drug-related crystal content in all 4 cases of nephropathy, without reference material and with high accuracy. Crystals were composed of unchanged parent drug and/or metabolites. Similar results were obtained using Raman and infrared microspectroscopy for 2 compounds. In the absence of reference standards of metabolites, Raman and infrared microspectroscopy showed that the crystals consisted of components similar, but not identical, to the administered drug for the other compounds, a limitation for these techniques. SEM/EDX showed which counter ions were colocalized with the identified drug-related material, complementing the MALDI-FTICR MS findings. Therefore, we recommend MALDI-FTICR MS as a first-line methodology to characterize crystal nephropathies. Raman and infrared microspectroscopy may be useful when MALDI-FTICR MS imaging cannot be applied. SEM/EDX could be considered as a complementary technology.


Assuntos
Injúria Renal Aguda/diagnóstico por imagem , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico por imagem , Rim/efeitos dos fármacos , Preparações Farmacêuticas/química , Animais , Cristalização , Avaliação Pré-Clínica de Medicamentos , Rim/diagnóstico por imagem , Macaca fascicularis , Camundongos , Estrutura Molecular , Preparações Farmacêuticas/análise , Ratos , Especificidade da Espécie , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Infravermelho , Análise Espectral Raman
18.
J Med Chem ; 61(8): 3350-3369, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29590750

RESUMO

Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( Ki < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.


Assuntos
Catepsina L/antagonistas & inibidores , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Lactamas Macrocíclicas/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Animais , Sítios de Ligação , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacocinética , Reposicionamento de Medicamentos , Humanos , Lactamas Macrocíclicas/síntese química , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/farmacocinética , Ligantes , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ratos , Relação Estrutura-Atividade , Suínos , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/farmacocinética
19.
Prog Biophys Mol Biol ; 130(Pt B): 212-222, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28688751

RESUMO

RATIONALE: Impaired maturation of human iPSC-derived cardiomyocytes (hiPSC-CMs) currently limits their use in experimental research and further optimization is required to unlock their full potential. OBJECTIVE: To push hiPSC-CMs towards maturation, we recapitulated the intrinsic cardiac properties by electro-mechanical stimulation and explored how these mimetic biophysical cues interplay and influence the cell behaviour. METHODS AND RESULTS: We introduced a novel device capable of applying synchronized electrical and mechanical stimuli to hiPSC-CM monolayers cultured on a PDMS membrane and evaluated effects of conditioning on cardiomyocyte structure and function. Human iPSC-CMs retained their cardiac phenotype and displayed adaptive structural responses to electrical (E), mechanical (M) and combined electro-mechanical (EM) stimuli, including enhanced membrane N-cadherin signal, stress-fiber formation and sarcomeric length shortening, most prominent under the EM stimulation. On the functional level, EM conditioning significantly reduced the transmembrane calcium current, resulting in a shift towards triangulation of intracellular calcium transients. In contrast, E and M stimulation applied independently increased the proportion of cells with L-Type calcium currents. In addition, calcium transients measured in the M-conditioned samples advanced to a more rectangular shape. CONCLUSION: The new methodology is a simple and elegant technique to systematically investigate and manipulate cardiomyocyte remodelling for translational applications. In the present study, we adjusted critical parameters to optimize a regimen for hiPSC-CM transformation. In the future, this technology will open up new avenues for electro-mechanical stimulation by allowing temporal and spatial control of stimuli which can be easily scaled up in complexity for cardiac development and disease modelling.


Assuntos
Fenômenos Eletrofisiológicos , Células-Tronco Pluripotentes Induzidas/citologia , Fenômenos Mecânicos , Miócitos Cardíacos/citologia , Pesquisa Translacional Biomédica , Transporte Biológico , Fenômenos Biomecânicos , Cálcio/metabolismo , Citoesqueleto/metabolismo , Humanos , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo
20.
Drug Discov Today ; 22(5): 751-756, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27903430

RESUMO

Many pharmaceutical companies aim to reduce reactive metabolite formation by chemical modification at early stages of drug discovery. A practice often applied is the detection of stable trapping products of electrophilic intermediates with nucleophilic trapping reagents to guide rational structure-based drug design. This contribution delineates this strategy to minimize the potential for reactive metabolite formation of clinical candidates during preclinical drug optimization, exemplified by the experience at Roche over the past decade. For the majority of research programs it was possible to proceed with compounds optimized for reduced covalent binding potential. Such optimized candidates are expected to have a higher likelihood of succeeding throughout the development processes, resulting in safer drugs.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/prevenção & controle , Ativação Metabólica , Bioensaio , Glutationa/metabolismo , Humanos , Preparações Farmacêuticas/metabolismo , Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA