Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10043, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698145

RESUMO

In this work, we present fabricated magnetic tunnel junctions (MTJs) that can serve as magnetic memories (MMs) or vortex spin-torque nano-oscillators (STNOs) depending on the device geometry. We explore the heating effect on the devices to study how the performance of a neuromorphic computing system (NCS) consisting of MMs and STNOs can be enhanced by temperature. We further applied a neural network for waveform classification applications. The resistance of MMs represents the synaptic weights of the NCS, while temperature acts as an extra degree of freedom in changing the weights and TMR, as their anti-parallel resistance is temperature sensitive, and parallel resistance is temperature independent. Given the advantage of using heat for such a network, we envision using a vertical-cavity surface-emitting laser (VCSEL) to selectively heat MMs and/or STNO when needed. We found that when heating MMs only, STNO only, or both MMs and STNO, from 25 to 75 °C, the output power of the STNO increases by 24.7%, 72%, and 92.3%, respectively. Our study shows that temperature can be used to improve the output power of neural networks, and we intend to pave the way for future implementation of a low-area and high-speed VCSEL-assisted spintronic NCS.

2.
ACS Appl Mater Interfaces ; 16(1): 1767-1778, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38113456

RESUMO

Two-dimensional (2D) transition metal dichalcogenides (TMDCs) are highly promising nanomaterials for various electronic devices such as field-effect transistors, junction diodes, tunneling devices, and, more recently, memristors. 2D MoSe2 stands out for having high electrical conductivity, charge carrier mobility, and melting point. While these features make it particularly appropriate as a switching layer in memristive devices, reliable and scalable production of large-area 2D MoSe2 still represents a challenge. In this study, we manufacture 2D MoSe2 films by atmospheric-pressure chemical vapor deposition and investigate them on the atomic scale. We selected and transferred MoSe2 bilayer to serve as a switching layer between asymmetric Au-Cu electrodes in miniaturized crossbar vertical memristors. The electrochemical metallization devices showed forming-free, bipolar resistive switching at low voltages, with clearly identifiable nonvolatile states. Other than low-power neuromorphic computing, low switching voltages approaching the range of biological action potentials could unlock hybrid biological interfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA