RESUMO
Dolichol is a lipid critical for N-glycosylation as a carrier for activated sugars and nascent oligosaccharides. It is commonly thought to be directly produced from polyprenol by the enzyme SRD5A3. Instead, we found that dolichol synthesis requires a three-step detour involving additional metabolites, where SRD5A3 catalyzes only the second reaction. The first and third steps are performed by DHRSX, whose gene resides on the pseudoautosomal regions of the X and Y chromosomes. Accordingly, we report a pseudoautosomal-recessive disease presenting as a congenital disorder of glycosylation in patients with missense variants in DHRSX (DHRSX-CDG). Of note, DHRSX has a unique dual substrate and cofactor specificity, allowing it to act as a NAD+-dependent dehydrogenase and as a NADPH-dependent reductase in two non-consecutive steps. Thus, our work reveals unexpected complexity in the terminal steps of dolichol biosynthesis. Furthermore, we provide insights into the mechanism by which dolichol metabolism defects contribute to disease.
Assuntos
Dolicóis , Dolicóis/metabolismo , Dolicóis/biossíntese , Humanos , Glicosilação , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/genética , Masculino , Mutação de Sentido Incorreto , FemininoRESUMO
Glycosylation-deficient Chinese hamster ovary (CHO) cell lines have been instrumental in the discovery of N-glycosylation machinery. Yet, the molecular causes of the glycosylation defects in the Lec5 and Lec9 mutants have been elusive, even though for both cell lines a defect in dolichol formation from polyprenol was previously established. We recently found that dolichol synthesis from polyprenol occurs in three steps consisting of the conversion of polyprenol to polyprenal by DHRSX, the reduction of polyprenal to dolichal by SRD5A3 and the reduction of dolichal to dolichol, again by DHRSX. This led us to investigate defective dolichol synthesis in Lec5 and Lec9 cells. Both cell lines showed increased levels of polyprenol and its derivatives, concomitant with decreased levels of dolichol and derivatives, but no change in polyprenal levels, suggesting DHRSX deficiency. Accordingly, N-glycan synthesis and changes in polyisoprenoid levels were corrected by complementation with human DHRSX but not with SRD5A3. Furthermore, the typical polyprenol dehydrogenase and dolichal reductase activities of DHRSX were absent in membrane preparations derived from Lec5 and Lec9 cells, while the reduction of polyprenal to dolichal, catalyzed by SRD5A3, was unaffected. Long-read whole genome sequencing of Lec5 and Lec9 cells did not reveal mutations in the ORF of SRD5A3, but the genomic region containing DHRSX was absent. Lastly, we established the sequence of Chinese hamster DHRSX and validated that this protein has similar kinetic properties to the human enzyme. Our work therefore identifies the basis of the dolichol synthesis defect in CHO Lec5 and Lec9 cells.
RESUMO
Free oligosaccharides (fOSs) are soluble oligosaccharide species generated during N-glycosylation of proteins. Although little is known about fOS metabolism, the recent identification of NGLY1 deficiency, a congenital disorder of deglycosylation (CDDG) caused by loss of function of an enzyme involved in fOS metabolism, has elicited increased interest in fOS processing. The catabolism of fOSs has been linked to the activity of a specific cytosolic mannosidase, MAN2C1, which cleaves α1,2-, α1,3-, and α1,6-mannose residues. In this study, we report the clinical, biochemical, and molecular features of six individuals, including two fetuses, with bi-allelic pathogenic variants in MAN2C1; the individuals are from four different families. These individuals exhibit dysmorphic facial features, congenital anomalies such as tongue hamartoma, variable degrees of intellectual disability, and brain anomalies including polymicrogyria, interhemispheric cysts, hypothalamic hamartoma, callosal anomalies, and hypoplasia of brainstem and cerebellar vermis. Complementation experiments with isogenic MAN2C1-KO HAP1 cells confirm the pathogenicity of three of the identified MAN2C1 variants. We further demonstrate that MAN2C1 variants lead to accumulation and delay in the processing of fOSs in proband-derived cells. These results emphasize the involvement of MAN2C1 in human neurodevelopmental disease and the importance of fOS catabolism.
Assuntos
Cistos do Sistema Nervoso Central/genética , Defeitos Congênitos da Glicosilação/genética , Hamartoma/genética , Deficiência Intelectual/genética , Oligossacarídeos/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/deficiência , Polimicrogiria/genética , alfa-Manosidase/genética , Adolescente , Alelos , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Linhagem Celular Tumoral , Cistos do Sistema Nervoso Central/metabolismo , Cistos do Sistema Nervoso Central/patologia , Vermis Cerebelar/metabolismo , Vermis Cerebelar/patologia , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/metabolismo , Defeitos Congênitos da Glicosilação/patologia , Feminino , Feto , Glicosilação , Hamartoma/metabolismo , Hamartoma/patologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Leucócitos/metabolismo , Leucócitos/patologia , Masculino , Manose/metabolismo , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/genética , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Polimicrogiria/metabolismo , Polimicrogiria/patologia , Língua/metabolismo , Língua/patologia , alfa-Manosidase/deficiênciaRESUMO
EDEM3 encodes a protein that converts Man8GlcNAc2 isomer B to Man7-5GlcNAc2. It is involved in the endoplasmic reticulum-associated degradation pathway, responsible for the recognition of misfolded proteins that will be targeted and translocated to the cytosol and degraded by the proteasome. In this study, through a combination of exome sequencing and gene matching, we have identified seven independent families with 11 individuals with bi-allelic protein-truncating variants and one individual with a compound heterozygous missense variant in EDEM3. The affected individuals present with an inherited congenital disorder of glycosylation (CDG) consisting of neurodevelopmental delay and variable facial dysmorphisms. Experiments in human fibroblast cell lines, human plasma, and mouse plasma and brain tissue demonstrated decreased trimming of Man8GlcNAc2 isomer B to Man7GlcNAc2, consistent with loss of EDEM3 enzymatic activity. In human cells, Man5GlcNAc2 to Man4GlcNAc2 conversion is also diminished with an increase of Glc1Man5GlcNAc2. Furthermore, analysis of the unfolded protein response showed a reduced increase in EIF2AK3 (PERK) expression upon stimulation with tunicamycin as compared to controls, suggesting an impaired unfolded protein response. The aberrant plasma N-glycan profile provides a quick, clinically available test for validating variants of uncertain significance that may be identified by molecular genetic testing. We propose to call this deficiency EDEM3-CDG.
Assuntos
Proteínas de Ligação ao Cálcio/genética , Defeitos Congênitos da Glicosilação/genética , Retículo Endoplasmático/genética , alfa-Manosidase/genética , Adolescente , Alelos , Proteínas de Ligação ao Cálcio/deficiência , Linhagem Celular , Criança , Pré-Escolar , Defeitos Congênitos da Glicosilação/sangue , Deficiências do Desenvolvimento/genética , Feminino , Glicoproteínas/sangue , Glicosilação , Humanos , Lactente , Deficiência Intelectual/genética , Masculino , Mutação , Linhagem , Polissacarídeos/sangue , Deficiências na Proteostase/genética , alfa-Manosidase/deficiênciaRESUMO
The Sda carbohydrate epitope and its biosynthetic B4GALNT2 enzyme are expressed in the healthy colon and down-regulated to variable extents in colon cancer. The human B4GALNT2 gene drives the expression of a long and a short protein isoform (LF-B4GALNT2 and SF-B4GALNT2) sharing identical transmembrane and luminal domains. Both isoforms are trans-Golgi proteins and the LF-B4GALNT2 also localizes to post-Golgi vesicles thanks to its extended cytoplasmic tail. Control mechanisms underpinning Sda and B4GALNT2 expression in the gastrointestinal tract are complex and not fully understood. This study reveals the existence of two unusual N-glycosylation sites in B4GALNT2 luminal domain. The first atypical N-X-C site is evolutionarily conserved and occupied by a complex-type N-glycan. We explored the influence of this N-glycan using site-directed mutagenesis and showed that each mutant had a slightly decreased expression level, impaired stability, and reduced enzyme activity. Furthermore, we observed that the mutant SF-B4GALNT2 was partially mislocalized in the endoplasmic reticulum, whereas the mutant LF-B4GALNT2 was still localized in the Golgi and post-Golgi vesicles. Lastly, we showed that the formation of homodimers was drastically impaired in the two mutated isoforms. An AlphaFold2 model of the LF-B4GALNT2 dimer with an N-glycan on each monomer corroborated these findings and suggested that N-glycosylation of each B4GALNT2 isoform controlled their biological activity.
Assuntos
Retículo Endoplasmático , Complexo de Golgi , N-Acetilgalactosaminiltransferases , Humanos , Retículo Endoplasmático/metabolismo , Glicosilação , Complexo de Golgi/metabolismo , Polissacarídeos/metabolismo , Isoformas de Proteínas/metabolismo , N-Acetilgalactosaminiltransferases/genéticaRESUMO
Fatty acid synthase (FASN) participates in many fundamental biological processes, including energy storage and signal transduction, and is overexpressed in many cancer cells. We previously showed in a context of lipogenesis that FASN is protected from degradation by its interaction with O-GlcNAc transferase (OGT) in a nutrient-dependent manner. We and others also reported that OGT and O-GlcNAcylation up-regulate the PI3K/AKT/mTOR pathway that senses mitogenic signals and nutrient availability to drive cell cycle. Using biochemical and microscopy approaches, we show here that FASN co-localizes with OGT in the cytoplasm and, to a lesser extent, in the membrane fraction. This interaction occurs in a cell cycle-dependent manner, following the pattern of FASN expression. Moreover, we show that FASN expression depends on OGT upon serum stimulation. The level of FASN also correlates with the activation of the PI3K/AKT/mTOR pathway in hepatic cell lines, and in livers of obese mice and in a chronically activated insulin and mTOR signaling mouse model (PTEN-null mice). These results indicate that FASN is under a dual control of O-GlcNAcylation and mTOR pathways. In turn, blocking FASN with the small-molecule inhibitor C75 reduces both OGT and O-GlcNAcylation levels, and mTOR activation, highlighting a novel reciprocal regulation between these actors. In addition to the role of O-GlcNAcylation in tumorigenesis, our findings shed new light on how aberrant activity of FASN and mTOR signaling may promote the emergence of hepatic tumors.
Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/patologia , Ácido Graxo Sintase Tipo I/metabolismo , Neoplasias Hepáticas/patologia , N-Acetilglucosaminiltransferases/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proliferação de Células , Ácido Graxo Sintase Tipo I/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , N-Acetilglucosaminiltransferases/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The Sda carbohydrate antigen and the corresponding biosynthetic enzyme B4GALNT2 are primarily expressed in human normal colonic mucosa and are down-regulated to variable degrees in colon cancer. On the other hand, the tumor associated antigen SLex is not detected in the healthy colon and is upregulated in colon cancer. High level of B4GALNT2 gene expression appears to be a good marker of prognosis in colon cancer; however, the molecular mechanisms regulating these carbohydrate antigens' expression are still poorly understood. We review here the most recent progress made towards understanding this balanced expression of blood group carbohydrate epitopes Sda and SLex . In particular in recent years, we have attained a better understanding of genetic and epigenetic regulation of the B4GALNT2 gene and of the subcellular fate of B4GALNT2 isoforms.
Assuntos
Colo/metabolismo , Neoplasias do Colo/metabolismo , N-Acetilgalactosaminiltransferases/metabolismo , Oligossacarídeos/biossíntese , Antígeno Sialil Lewis X/biossíntese , Neoplasias do Colo/diagnóstico , Humanos , PrognósticoRESUMO
Colorectal cancer (CRC) affects both women and men living in societies with a high sedentary lifestyle. Amongst the phenotypic changes exhibited by tumor cells, a wide range of glycosylation has been reported for colon cancer-derived cell lines and CRC tissues. These aberrant modifications affect different aspects of glycosylation, including an increase in core fucosylation and GlcNAc branching on N-glycans, alteration of O-glycans, upregulated sialylation, and O-GlcNAcylation. Although O-GlcNAcylation and complex glycosylations differ in many aspects, sparse evidences report on the interference of O-GlcNAcylation with complex glycosylation. Nevertheless, this relationship is still a matter of debate. Combining different approaches on three human colon cell lines (HT29, HCT116 and CCD841CoN), it is herein reported that silencing O-GlcNAc transferase (OGT, the sole enzyme driving O-GlcNAcylation), only slightly affects overall N- and O-glycosylation patterns. Interestingly, silencing of OGT in HT29 cells upregulates E-cadherin (a major actor of epithelial-to-mesenchymal transition) and changes its glycosylation. On the other hand, OGT silencing perturbs biosynthesis of glycosphingolipids resulting in a decrease in gangliosides and an increase in globosides. Together, these results provide novel insights regarding the selective regulation of complex glycosylations by O-GlcNAcylation in colon cancer cells.
Assuntos
Caderinas/genética , Neoplasias Colorretais/genética , N-Acetilglucosaminiltransferases/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/genética , Inativação Gênica , Glicoesfingolipídeos/biossíntese , Glicoesfingolipídeos/genética , Glicosilação , Células HCT116 , Células HT29 , Humanos , Polissacarídeos/genéticaRESUMO
O-GlcNAcylation of proteins is governed by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). The homeostasis of O-GlcNAc cycling is regulated during cell cycle progression and is essential for proper cellular division. We previously reported the O-GlcNAcylation of the minichromosome maintenance proteins MCM2, MCM3, MCM6 and MCM7. These proteins belong to the MCM2-7 complex which is crucial for the initiation of DNA replication through its DNA helicase activity. Here we show that the six subunits of MCM2-7 are O-GlcNAcylated and that O-GlcNAcylation of MCM proteins mainly occurs in the chromatin-bound fraction of synchronized human cells. Moreover, we identify stable interaction between OGT and several MCM subunits. We also show that down-regulation of OGT decreases the chromatin binding of MCM2, MCM6 and MCM7 without affecting their steady-state level. Finally, OGT silencing or OGA inhibition destabilizes MCM2/6 and MCM4/7 interactions in the chromatin-enriched fraction. In conclusion, OGT is a new partner of the MCM2-7 complex and O-GlcNAcylation homeostasis might regulate MCM2-7 complex by regulating the chromatin loading of MCM6 and MCM7 and stabilizing MCM/MCM interactions.
Assuntos
Cromatina/genética , Inativação Gênica , Proteínas de Manutenção de Minicromossomo/genética , N-Acetilglucosaminiltransferases/genética , Western Blotting , Linhagem Celular Tumoral , Cromatina/metabolismo , Glicosilação , Células HEK293 , Humanos , Células MCF-7 , Proteínas de Manutenção de Minicromossomo/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismoRESUMO
PURPOSE: Cancer cells often elicit a higher glycolytic rate than normal cells, supporting the development of glycolysis inhibitors as therapeutic agents. 2-Deoxyglucose (2-DG) is used in this context due to its ability to compete with glucose. However, many studies do not take into account that 2-DG inhibits not only glycolysis but also N-glycosylation. Since there are limited publications on 2-DG mechanism of action in breast cancer, we studied its effects in breast cancer cell lines to determine the part played by glycolysis inhibition and N-linked glycosylation interference. METHODS AND RESULTS: 2-Deoxyglucose behaved as an anticancer agent with a similar efficiency on cell number decrease between the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 breast cancer cells. It also interfered with the N-linked glycosylation process in both cell lines as illustrated by the migration profile of the lysosomal-associated membrane protein 2 and calumenin. These results are reinforced by the appearance of an abnormal Man7GlcNAc2 structure both on lipid-linked oligosaccharides and N-linked glycoproteins of 2-DG incubated MDA-MB-231 cells. Besides, 2-DG-induced a transient endoplasmic reticulum stress that was more sustained in MDA-MB-231 cells. Both changes were abrogated by mannose. 2-DG, even in the presence of mannose, decreased glycolysis in both cell lines. Mannose partially reversed the effects of 2-DG on cell numbers with N-linked glycosylation interference accounting for 37 and 47% of 2-DG anti-cancerous effects in MDA-MB-231 and MCF-7 cells, respectively. CONCLUSION: N-linked glycosylation interference and glycolysis disruption both contribute to the anticancer properties of 2-DG in breast cancer cells.
Assuntos
Neoplasias da Mama/tratamento farmacológico , Desoxiglucose/farmacologia , Glicólise/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glucose/metabolismo , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/química , Humanos , Células MCF-7RESUMO
Water-insoluble α-glucans synthesized from sucrose by glucansucrases from Streptococcus spp. are essential in dental plaque and caries formation. Because limited information is available on the fine structure of these biopolymers, we analyzed the structures of unmodified glucans produced by five recombinant Streptococcus (S.) mutans DSM 20523 and S. salivarius DSM 20560 glucansucrases in detail. A combination of methylation analysis, endo-dextranase and endo-mutanase hydrolyses, and HPSEC-RI was used. Furthermore, crystal-like regions were analyzed by using XRD and 13C MAS NMR spectroscopy. Our results showed that the glucan structures were highly diverse: Two glucans with 1,3- and 1,6-linkages were characterized in detail besides an almost exclusively 1,3-linked and a linear 1,6-linked glucan. Furthermore, one glucan contained 1,3-, 1,4-, and 1,6-linkages and thus had an unusual, not yet described structure. It was demonstrated that the glucans had a varying structural architecture by using partial enzymatic hydrolyses. Furthermore, crystal-like regions formed by 1,3-glucopyranose units were observed for the two 1,3- and 1,6-linked glucans and the linear 1,3-linked glucan. 1,6-linked regions were mobile and not involved in the crystal-like areas. Altogether, our results broaden the knowledge of the structure of water-insoluble α-glucans from Streptococcus spp.
Assuntos
Glucanos , Glicosiltransferases , Água , Glucanos/química , Água/química , Glicosiltransferases/metabolismo , Glicosiltransferases/química , Streptococcus/enzimologia , Solubilidade , Streptococcus mutans/enzimologiaRESUMO
Investigating the function of target proteins for functional prospection or therapeutic applications typically requires the production and purification of recombinant proteins. The fusion of these proteins with tag peptides and fluorescently derived proteins allows the monitoring of candidate proteins using SDS-PAGE coupled with western blotting and fluorescent microscopy, respectively. However, protein engineering poses a significant challenge for many researchers. In this protocol, we describe step-by-step the engineering of a recombinant protein with various tags: TAT-HA (trans-activator of transduction-hemagglutinin), 6×His and EGFP (enhanced green fluorescent protein) or mCherry. Fusion proteins are produced in E. coli BL21(DE3) cells and purified by immobilized metal affinity chromatography (IMAC) using a Ni-nitrilotriacetic acid (NTA) column. Then, tagged recombinant proteins are introduced into cultured animal cells by using the penetrating peptide TAT-HA. Here, we present a thorough protocol providing a detailed guide encompassing every critical step from plasmid DNA molecular assembly to protein expression and subsequent purification and outlines the conditions necessary for protein transduction technology into animal cells in a comprehensive manner. We believe that this protocol will be a valuable resource for researchers seeking an exhaustive, step-by-step guide for the successful production and purification of recombinant proteins and their entry by transduction within living cells. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: DNA cloning, molecular assembly strategies, and protein production Basic Protocol 2: Protein purification Basic Protocol 3: Protein transduction in mammalian cells.
Assuntos
Escherichia coli , Peptídeos , Animais , Escherichia coli/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Peptídeos/genética , Peptídeos/metabolismo , Indicadores e Reagentes/metabolismo , Produtos do Gene tat/metabolismo , Corantes/metabolismo , DNA/metabolismo , Mamíferos/genética , Mamíferos/metabolismoRESUMO
Glycosylation-deficient Chinese hamster ovary (CHO) cell lines have been instrumental in the discovery of N-glycosylation machinery. Yet, the molecular causes of the glycosylation defects in the Lec5 and Lec9 mutants have been elusive, even though for both cell lines a defect in dolichol formation from polyprenol was previously established. We recently found that dolichol synthesis from polyprenol occurs in three steps consisting of the conversion of polyprenol to polyprenal by DHRSX, the reduction of polyprenal to dolichal by SRD5A3 and the reduction of dolichal to dolichol, again by DHRSX. This led us to investigate defective dolichol synthesis in Lec5 and Lec9 cells. Both cell lines showed increased levels of polyprenol and its derivatives, concomitant with decreased levels of dolichol and derivatives, but no change in polyprenal levels, suggesting DHRSX deficiency. Accordingly, N-glycan synthesis and changes in polyisoprenoid levels were corrected by complementation with human DHRSX but not with SRD5A3. Furthermore, the typical polyprenol dehydrogenase and dolichal reductase activities of DHRSX were absent in membrane preparations derived from Lec5 and Lec9 cells, while the reduction of polyprenal to dolichal, catalyzed by SRD5A3, was unaffected. Long-read whole genome sequencing of Lec5 and Lec9 cells did not reveal mutations in the ORF of SRD5A3, but the genomic region containing DHRSX was absent. Lastly, we established the sequence of Chinese hamster DHRSX and validated that this protein has similar kinetic properties to the human enzyme. Our work therefore identifies the basis of the dolichol synthesis defect in CHO Lec5 and Lec9 cells.
RESUMO
An accelerated de novo lipogenesis (DNL) flux is a common characteristic of cancer cells required to sustain a high proliferation rate. The DNL enzyme fatty acid synthase (FASN) is overexpressed in many cancers and is pivotal for the increased production of fatty acids. There is increasing evidences of the involvement of FASN in several hallmarks of cancer linked to its ability to promote cell proliferation via membranes biosynthesis. In this review we discuss about the implication of FASN in the resistance to cell death and in the deregulation of cellular energetics by increasing nucleic acids, protein and lipid synthesis. FASN also promotes cell proliferation, cell invasion, metastasis and angiogenesis by enabling the building of lipid rafts and consequently to the localization of oncogenic receptors such as HER2 and c-Met in membrane microdomains. Finally, FASN is involved in immune escape by repressing the activation of pro-inflammatory cells and promoting the recruitment of M2 macrophages and T regulatory cells in the tumor microenvironment. Here, we provide an overview of the involvement of the pro-oncogenic enzyme in the hallmarks of cancer making FASN a promising target in anti-cancer therapy to circumvent resistance to chemotherapies.
RESUMO
The human polysialyltransferases ST8Sia II and ST8Sia IV catalyze the transfer of several Neu5Ac residues onto glycoproteins forming homopolymers with essential roles during different physiological processes. In salmonids, heterogeneous set of sialic acids polymers have been described in ovary and on eggs cell surface and three genes st8sia4, st8sia2-r1 and st8sia2-r2 were identified that could be implicated in these heteropolymers. The three polysialyltransferases from the salmonid Coregonus maraena were cloned, recombinantly expressed in HEK293 cells and the ST8Sia IV was biochemically characterized. The MicroPlate Sialyltransferase Assay and the non-natural donor substrate CMP-SiaNAl were used to demonstrate enzyme activity and optimize polysialylation reactions. Polysialylation was also carried out with natural donor substrates CMP-Neu5Ac, CMP-Neu5Gc and CMP-Kdn in cell-free and cell-based assays and structural analyses of polysialylated products using the anti-polySia monoclonal antibody 735 and endoneuraminidase N and HPLC approaches. Our data highlighted distinct specificities of human and salmonid polysialyltransferases with notable differences in donor substrates use and the capacity of fish enzymes to generate heteropolymers. This study further suggested an evolution of the biological functions of polySia. C. maraena ST8Sia IV of particular interest to modify glycoproteins with a variety of polySia chains.
Assuntos
Ácido N-Acetilneuramínico , Salmonidae , Animais , Feminino , Humanos , Células HEK293 , BioensaioRESUMO
INTRODUCTION: Chronic kidney disease (CKD) affects > 10% of the population but not all CKD patients require referral to a nephrologist. Various recommendations for referral to nephrologists are proposed worldwide. We examined the profile of French patients consulting a nephrologist for the first time and compared these characteristics with the recommendations of the International Kidney Disease: Improving Global Outcomes (KDIGO), the French "Haute Autorité de Santé" (HAS), and the Canadian Kidney Failure Risk Equation (KFRE). METHODS: University Hospital electronic medical records were used to study patients referred for consultation with a nephrologist for the first time from 2016 to 2018. Patient characteristics (age, sex, diabetic status, estimated glomerular filtration rate (eGFR) and urine protein-to-creatinine ratio (PCR), etiology reported by the nephrologist) and 1-year patient follow-up were analyzed and compared with the KDIGO, HAS and Canadian-KFRE recommendations for referral to a nephrologist. The stages were defined according to the KDIGO classification, based upon kidney function and proteinuria. RESULTS: The 1,547 included patients had a median age of 71 [61-79] years with 56% males and 37% with diabetes. The main nephropathies were vascular (40%) and glomerular (20%). The KDIGO classification revealed 30%, 47%, 19%, 4% stages G1-2 to G5, and 50%, 22%, 28% stages A1-A3, respectively. According to KDIGO, HAS and KFRE scores, nephrologist referral was indicated for 42%, 57% and 80% of patients respectively, with poor agreement between recommendations. Furthermore, we observed 890 (57%) patients with an eGFR> 30 ml/min and a urine protein to creatinine ratio 0.5 g/g, mostly aged over 65 years (67%); 40% were diabetic, and 57% had a eGFR > 45 ml/min/1.73m2, 56% were diagnosed as vascular nephropathy and 11% with unknown nephropathy. CONCLUSION: These results underline the importance of better identifying patients for referral to a nephrologist and informing general practitioners. Other referral criteria (age and etiology of the nephropathy) are debatable.
Assuntos
Falência Renal Crônica , Insuficiência Renal Crônica , Idoso , Canadá , Creatinina/urina , Feminino , Taxa de Filtração Glomerular , Humanos , Falência Renal Crônica/epidemiologia , Masculino , Pessoa de Meia-Idade , Nefrologistas , Pacientes Ambulatoriais , Encaminhamento e Consulta , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/terapiaRESUMO
Alteration of O-GlcNAcylation, a dynamic posttranslational modification, is associated with tumorigenesis and tumor progression. Its role in chemotherapy response is poorly investigated. Standard treatment for colorectal cancer (CRC), 5-fluorouracil (5-FU), mainly targets Thymidylate Synthase (TS). TS O-GlcNAcylation was reported but not investigated yet. We hypothesize that O-GlcNAcylation interferes with 5-FU CRC sensitivity by regulating TS. In vivo, we observed that combined 5-FU with Thiamet-G (O-GlcNAcase (OGA) inhibitor) treatment had a synergistic inhibitory effect on grade and tumor progression. 5-FU decreased O-GlcNAcylation and, reciprocally, elevation of O-GlcNAcylation was associated with TS increase. In vitro in non-cancerous and cancerous colon cells, we showed that 5-FU impacts O-GlcNAcylation by decreasing O-GlcNAc Transferase (OGT) expression both at mRNA and protein levels. Reciprocally, OGT knockdown decreased 5-FU-induced cancer cell apoptosis by reducing TS protein level and activity. Mass spectrometry, mutagenesis and structural studies mapped O-GlcNAcylated sites on T251 and T306 residues and deciphered their role in TS proteasomal degradation. We reveal a crosstalk between O-GlcNAcylation and 5-FU metabolism in vitro and in vivo that converges to 5-FU CRC sensitization by stabilizing TS. Overall, our data propose that combining 5-FU-based chemotherapy with Thiamet-G could be a new way to enhance CRC response to 5-FU.
Assuntos
Timidilato SintaseRESUMO
The HER2 receptor and its MUC4 mucin partner form an oncogenic complex via an extracellular region of MUC4 encompassing three EGF domains that promotes tumor progression of pancreatic cancer (PC) cells. However, the molecular mechanism of interaction remains poorly understood. Herein, we decipher at the molecular level the role and impact of the MUC4EGF domains in the mediation of the binding affinities with HER2 and the PC cell tumorigenicity. We used an integrative approach combining in vitro bioinformatic, biophysical, biochemical, and biological approaches, as well as an in vivo study on a xenograft model of PC. In this study, we specified the binding mode of MUC4EGF domains with HER2 and demonstrate their "growth factor-like" biological activities in PC cells leading to stimulation of several signaling proteins (mTOR pathway, Akt, and ß-catenin) contributing to PC progression. Molecular dynamics simulations of the MUC4EGF/HER2 complexes led to 3D homology models and identification of binding hotspots mediating binding affinity with HER2 and PC cell proliferation. These results will pave the way to the design of potential MUC4/HER2 inhibitors targeting the EGF domains of MUC4. This strategy will represent a new efficient alternative to treat cancers associated with MUC4/HER2 overexpression and HER2-targeted therapy failure as a new adapted treatment to patients.
RESUMO
BACKGROUND: The Sda antigen and corresponding biosynthetic enzyme B4GALNT2 are primarily expressed in normal colonic mucosa and are down-regulated to a variable degree in colon cancer tissues. Although their expression profile is well studied, little is known about the underlying regulatory mechanisms. METHODS: To clarify the molecular basis of Sda expression in the human gastrointestinal tract, we investigated the transcriptional regulation of the human B4GALNT2 gene. The proximal promoter region was delineated using luciferase assays and essential trans-acting factors were identified through transient overexpression and silencing of several transcription factors. RESULTS: A short cis-regulatory region restricted to the -72 to +12 area upstream of the B4GALNT2 short-type transcript variant contained the essential promoter activity that drives the expression of the human B4GALNT2 regardless of the cell type. We further showed that B4GALNT2 transcriptional activation mostly requires ETS1 and to a lesser extent SP1. CONCLUSIONS: Results presented herein are expected to provide clues to better understand B4GALNT2 regulatory mechanisms.