Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Bioinformatics ; 34(22): 3948-3950, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29931043

RESUMO

Motivation: Proteins, especially those involved in signaling pathways are composed of functional modules connected by linker domains with varying degrees of flexibility. To understand the structure-function relationships in these macromolecules, it is helpful to visualize the geometric arrangement of domains. Furthermore, accurate spatial representation of domain structure is necessary for coarse-grain models of the multi-molecular interactions that comprise signaling pathways. Results: We introduce a new tool, mol2sphere, that transforms the atomistic structure of a macromolecule into a series of linked spheres corresponding to domains. It does this with a k-means clustering algorithm. It may be used for visualization or for coarse grain modeling and simulation. Availability and implementation: PyMOL plugin, source, and documentation.https://nmrbox.org/registry/mol2sphere. SpringSaLaD executables and documentation: http://vcell.org/ssalad, SpringSaLaD v.2 source: https://github.com/jmasison/SpringSaLaD.


Assuntos
Conformação Proteica , Proteínas/química , Software , Algoritmos , Análise por Conglomerados , Biologia Computacional
2.
Methods ; 138-139: 62-68, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29522805

RESUMO

The development of multidimensional NMR spectroscopy enabled an explosion of structural and dynamical investigations on proteins and other biomacromolecules. Practical limitations on data sampling, based on the Jeener paradigm of parametric sampling of indirect time domains, have long placed limits on resolution in the corresponding frequency dimensions. The emergence of nonuniform sampling (NUS) in indirect time dimensions circumvents those limitations, affording high resolution spectra from short data records collected in practically realized measurement times. In addition to substantially improved resolution, NUS can also be exploited to improve sensitivity, with gains comparable to those obtained using cryogenically cooled probes. We describe a general approach for acquiring and processing multidimensional NUS NMR data for improving sensitivity.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Conformação Proteica , Estrutura Molecular , Sensibilidade e Especificidade
3.
Biophys J ; 112(8): 1529-1534, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445744

RESUMO

Advances in computation have been enabling many recent advances in biomolecular applications of NMR. Due to the wide diversity of applications of NMR, the number and variety of software packages for processing and analyzing NMR data is quite large, with labs relying on dozens, if not hundreds of software packages. Discovery, acquisition, installation, and maintenance of all these packages is a burdensome task. Because the majority of software packages originate in academic labs, persistence of the software is compromised when developers graduate, funding ceases, or investigators turn to other projects. To simplify access to and use of biomolecular NMR software, foster persistence, and enhance reproducibility of computational workflows, we have developed NMRbox, a shared resource for NMR software and computation. NMRbox employs virtualization to provide a comprehensive software environment preconfigured with hundreds of software packages, available as a downloadable virtual machine or as a Platform-as-a-Service supported by a dedicated compute cloud. Ongoing development includes a metadata harvester to regularize, annotate, and preserve workflows and facilitate and enhance data depositions to BioMagResBank, and tools for Bayesian inference to enhance the robustness and extensibility of computational analyses. In addition to facilitating use and preservation of the rich and dynamic software environment for biomolecular NMR, NMRbox fosters the development and deployment of a new class of metasoftware packages. NMRbox is freely available to not-for-profit users.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Software , Acesso à Informação , Teorema de Bayes , Computação em Nuvem , Internet , Metadados
4.
Phys Chem Chem Phys ; 18(28): 19482, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27364917

RESUMO

Correction for 'Sparse sampling methods in multidimensional NMR' by Mehdi Mobli et al., Phys. Chem. Chem. Phys., 2012, 14, 10835-10843.

5.
Acc Chem Res ; 47(2): 708-17, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24400700

RESUMO

NMR spectroscopy is one of the most powerful and versatile analytic tools available to chemists. The discrete Fourier transform (DFT) played a seminal role in the development of modern NMR, including the multidimensional methods that are essential for characterizing complex biomolecules. However, it suffers from well-known limitations: chiefly the difficulty in obtaining high-resolution spectral estimates from short data records. Because the time required to perform an experiment is proportional to the number of data samples, this problem imposes a sampling burden for multidimensional NMR experiments. At high magnetic field, where spectral dispersion is greatest, the problem becomes particularly acute. Consequently multidimensional NMR experiments that rely on the DFT must either sacrifice resolution in order to be completed in reasonable time or use inordinate amounts of time to achieve the potential resolution afforded by high-field magnets. Maximum entropy (MaxEnt) reconstruction is a non-Fourier method of spectrum analysis that can provide high-resolution spectral estimates from short data records. It can also be used with nonuniformly sampled data sets. Since resolution is substantially determined by the largest evolution time sampled, nonuniform sampling enables high resolution while avoiding the need to uniformly sample at large numbers of evolution times. The Nyquist sampling theorem does not apply to nonuniformly sampled data, and artifacts that occur with the use of nonuniform sampling can be viewed as frequency-aliased signals. Strategies for suppressing nonuniform sampling artifacts include the careful design of the sampling scheme and special methods for computing the spectrum. Researchers now routinely report that they can complete an N-dimensional NMR experiment 3(N-1) times faster (a 3D experiment in one ninth of the time). As a result, high-resolution three- and four-dimensional experiments that were prohibitively time consuming are now practical. Conversely, tailored sampling in the indirect dimensions has led to improved sensitivity. Further advances in nonuniform sampling strategies could enable further reductions in sampling requirements for high resolution NMR spectra, and the combination of these strategies with robust non-Fourier methods of spectrum analysis (such as MaxEnt) represent a profound change in the way researchers conduct multidimensional experiments. The potential benefits will enable more advanced applications of multidimensional NMR spectroscopy to study biological macromolecules, metabolomics, natural products, dynamic systems, and other areas where resolution, sensitivity, or experiment time are limiting. Just as the development of multidimensional NMR methods presaged multidimensional methods in other areas of spectroscopy, we anticipate that nonuniform sampling approaches will find applications in other forms of spectroscopy.


Assuntos
Entropia , Espectroscopia de Ressonância Magnética/métodos , Análise de Fourier
6.
Proc Natl Acad Sci U S A ; 108(40): 16640-4, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21949370

RESUMO

Despite advances in resolution accompanying the development of high-field superconducting magnets, biomolecular applications of NMR require multiple dimensions in order to resolve individual resonances, and the achievable resolution is typically limited by practical constraints on measuring time. In addition to the need for measuring long evolution times to obtain high resolution, the need to distinguish the sign of the frequency constrains the ability to shorten measuring times. Sign discrimination is typically accomplished by sampling the signal with two different receiver phases or by selecting a reference frequency outside the range of frequencies spanned by the signal and then sampling at a higher rate. In the parametrically sampled (indirect) time dimensions of multidimensional NMR experiments, either method imposes an additional factor of 2 sampling burden for each dimension. We demonstrate that by using a single detector phase at each time sample point, but randomly altering the phase for different points, the sign ambiguity that attends fixed single-phase detection is resolved. Random phase detection enables a reduction in experiment time by a factor of 2 for each indirect dimension, amounting to a factor of 8 for a four-dimensional experiment, albeit at the cost of introducing sampling artifacts. Alternatively, for fixed measuring time, random phase detection can be used to double resolution in each indirect dimension. Random phase detection is complementary to nonuniform sampling methods, and their combination offers the potential for additional benefits. In addition to applications in biomolecular NMR, random phase detection could be useful in magnetic resonance imaging and other signal processing contexts.


Assuntos
Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador , Fatores de Tempo
7.
J Magn Reson ; 352: 107458, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37146525

RESUMO

Increases in digital resolution achieved by high-field NMR require increases in spectral width. Additionally, the ability to resolve two overlapping peaks requires a sufficiently long acquisition time. These constraints combine, so that achieving high resolution spectra on high-field magnets requires long experiment times when employing uniform sampling and Fourier Transform processing. These limitations may be addressed by using nonuniform sampling (NUS), but the complexity of the parameter space across the variety of available NUS schemes greatly hinders the establishment of optimal approaches and best practices. We address these challenges with nus-tool, which is a software package for generating and analyzing NUS schedules. The nus-tool software internally implements random sampling and exponentially biased sampling. Through pre-configured plug-ins, it also provides access to quantile sampling and Poisson gap sampling. The software computes the relative sensitivity, mean evolution time, point spread function, and peak-to-sidelobe ratio; all of which can be determined for a candidate sample schedule prior to running an experiment to verify expected sensitivity, resolution, and artifact suppression. The nus-tool package is freely available on the NMRbox platform through an interactive GUI and via the command line, which is especially useful for scripted workflows that investigate the effectiveness of various NUS schemes.


Assuntos
Imageamento por Ressonância Magnética , Software , Espectroscopia de Ressonância Magnética , Imagem de Difusão por Ressonância Magnética , Artefatos
8.
Top Curr Chem ; 316: 49-77, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21773916

RESUMO

Beginning with the introduction of Fourier Transform NMR by Ernst and Anderson in 1966, time domain measurement of the impulse response (free induction decay) consisted of sampling the signal at a series of discrete intervals. For compatibility with the discrete Fourier transform, the intervals are kept uniform, and the Nyquist theorem dictates the largest value of the interval sufficient to avoid aliasing. With the proposal by Jeener of parametric sampling along an indirect time dimension, extension to multidimensional experiments employed the same sampling techniques used in one dimension, similarly subject to the Nyquist condition and suitable for processing via the discrete Fourier transform. The challenges of obtaining high-resolution spectral estimates from short data records were already well understood, and despite techniques such as linear prediction extrapolation, the achievable resolution in the indirect dimensions is limited by practical constraints on measuring time. The advent of methods of spectrum analysis capable of processing nonuniformly sampled data has led to an explosion in the development of novel sampling strategies that avoid the limits on resolution and measurement time imposed by uniform sampling. In this chapter we review the fundamentals of uniform and nonuniform sampling methods in one- and multidimensional NMR.


Assuntos
Bases de Dados Factuais , Espectroscopia de Ressonância Magnética , Espectroscopia de Ressonância Magnética/normas , Padrões de Referência
9.
Phys Chem Chem Phys ; 14(31): 10835-43, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22481242

RESUMO

Although the discrete Fourier transform played an enabling role in the development of modern NMR spectroscopy, it suffers from a well-known difficulty providing high-resolution spectra from short data records. In multidimensional NMR experiments, so-called indirect time dimensions are sampled parametrically, with each instance of evolution times along the indirect dimensions sampled via separate one-dimensional experiments. The time required to conduct multidimensional experiments is directly proportional to the number of indirect evolution times sampled. Despite remarkable advances in resolution with increasing magnetic field strength, multiple dimensions remain essential for resolving individual resonances in NMR spectra of biological macromolecues. Conventional Fourier-based methods of spectrum analysis limit the resolution that can be practically achieved in the indirect dimensions. Nonuniform or sparse data collection strategies, together with suitable non-Fourier methods of spectrum analysis, enable high-resolution multidimensional spectra to be obtained. Although some of these approaches were first employed in NMR more than two decades ago, it is only relatively recently that they have been widely adopted. Here we describe the current practice of sparse sampling methods and prospects for further development of the approach to improve resolution and sensitivity and shorten experiment time in multidimensional NMR. While sparse sampling is particularly promising for multidimensional NMR, the basic principles could apply to other forms of multidimensional spectroscopy.


Assuntos
Espectroscopia de Ressonância Magnética , Análise de Fourier , Substâncias Macromoleculares/química , Campos Magnéticos , Ubiquitina/química
10.
Proteins ; 79(2): 417-27, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21104697

RESUMO

The most prominent form of familial amyotrophic lateral sclerosis (fALS, Lou Gehrig's Disease) is caused by mutations of Cu-Zn superoxide dismutase 1 (SOD1). SOD1 maintains antioxidant activity under fALS causing mutations, suggesting that the mutations introduce a new, toxic, function. There are 100+ such known mutations that are chemically diverse and spatially distributed across the structure. The common phenotype leads us to propose an allosteric regulatory mechanism hypothesis: SOD1 mutants alter the correlated dynamics of the structure and differentially signal across an inherent allosteric network, thereby driving the disease mechanism at varying rates of efficiency. Two recently developed computational methods for identifying allosteric control sites are applied to the wild type crystal structure, 4 fALS mutant crystal structures, 20 computationally generated fALS mutants and 1 computationally generated non-fALS mutant. The ensemble of mutant structures is used to generate an ensemble of dynamics, from which two allosteric control networks are identified. One network is connected to the catalytic site and thus may be involved in the natural antioxidant function. The second allosteric control network has a locus bordering the dimer interface and thus may serve as a mechanism to modulate dimer stability. Though the toxic function of mutated SOD1 is unknown and likely due to several contributing factors, this study explains how diverse mutations give rise to a common function. This new paradigm for allostery controlled function has broad implications across allosteric systems and may lead to the identification of the key chemical activity of SOD1-linked ALS.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Superóxido Dismutase/genética , Regulação Alostérica , Simulação por Computador , Humanos , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Superóxido Dismutase-1
11.
J Biomol NMR ; 50(3): 247-62, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21626215

RESUMO

The full resolution afforded by high-field magnets is rarely realized in the indirect dimensions of multidimensional NMR experiments because of the time cost of uniformly sampling to long evolution times. Emerging methods utilizing nonuniform sampling (NUS) enable high resolution along indirect dimensions by sampling long evolution times without sampling at every multiple of the Nyquist sampling interval. While the earliest NUS approaches matched the decay of sampling density to the decay of the signal envelope, recent approaches based on coupled evolution times attempt to optimize sampling by choosing projection angles that increase the likelihood of resolving closely-spaced resonances. These approaches employ knowledge about chemical shifts to predict optimal projection angles, whereas prior applications of tailored sampling employed only knowledge of the decay rate. In this work we adapt the matched filter approach as a general strategy for knowledge-based nonuniform sampling that can exploit prior knowledge about chemical shifts and is not restricted to sampling projections. Based on several measures of performance, we find that exponentially weighted random sampling (envelope matched sampling) performs better than shift-based sampling (beat matched sampling). While shift-based sampling can yield small advantages in sensitivity, the gains are generally outweighed by diminished robustness. Our observation that more robust sampling schemes are only slightly less sensitive than schemes highly optimized using prior knowledge about chemical shifts has broad implications for any multidimensional NMR study employing NUS. The results derived from simulated data are demonstrated with a sample application to PfPMT, the phosphoethanolamine methyltransferase of the human malaria parasite Plasmodium falciparum.


Assuntos
Espectroscopia de Ressonância Magnética/métodos
12.
Front Mol Biosci ; 8: 817175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111815

RESUMO

The Biological Magnetic Resonance Data Bank (BMRB) has served the NMR structural biology community for 40 years, and has been instrumental in the development of many widely-used tools. It fosters the reuse of data resources in structural biology by embodying the FAIR data principles (Findable, Accessible, Inter-operable, and Re-usable). NMRbox is less than a decade old, but complements BMRB by providing NMR software and high-performance computing resources, facilitating the reuse of software resources. BMRB and NMRbox both facilitate reproducible research. NMRbox also fosters the development and deployment of complex meta-software. Combining BMRB and NMRbox helps speed and simplify workflows that utilize BMRB, and enables facile federation of BMRB with other data repositories. Utilization of BMRB and NMRbox in tandem will enable additional advances, such as machine learning, that are poised to become increasingly powerful.

13.
Magn Reson (Gott) ; 2(2): 765-775, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37905229

RESUMO

Hydrogen bonding between an amide group and the p-π cloud of an aromatic ring was first identified in a protein in the 1980s. Subsequent surveys of high-resolution X-ray crystal structures found multiple instances, but their preponderance was determined to be infrequent. Hydrogen atoms participating in a hydrogen bond to the p-π cloud of an aromatic ring are expected to experience an upfield chemical shift arising from a shielding ring current shift. We surveyed the Biological Magnetic Resonance Data Bank for amide hydrogens exhibiting unusual shifts as well as corroborating nuclear Overhauser effects between the amide protons and ring protons. We found evidence that Trp residues are more likely to be involved in p-π hydrogen bonds than other aromatic amino acids, whereas His residues are more likely to be involved in in-plane hydrogen bonds, with a ring nitrogen acting as the hydrogen acceptor. The p-π hydrogen bonds may be more abundant than previously believed. The inclusion in NMR structure refinement protocols of shift effects in amide protons from aromatic sidechains, or explicit hydrogen bond restraints between amides and aromatic rings, could improve the local accuracy of sidechain orientations in solution NMR protein structures, but their impact on global accuracy is likely be limited.

14.
Magn Reson (Gott) ; 2(2): 843-861, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37905225

RESUMO

Although the concepts of nonuniform sampling (NUS​​​​​​​) and non-Fourier spectral reconstruction in multidimensional NMR began to emerge 4 decades ago , it is only relatively recently that NUS has become more commonplace. Advantages of NUS include the ability to tailor experiments to reduce data collection time and to improve spectral quality, whether through detection of closely spaced peaks (i.e., "resolution") or peaks of weak intensity (i.e., "sensitivity"). Wider adoption of these methods is the result of improvements in computational performance, a growing abundance and flexibility of software, support from NMR spectrometer vendors, and the increased data sampling demands imposed by higher magnetic fields. However, the identification of best practices still remains a significant and unmet challenge. Unlike the discrete Fourier transform, non-Fourier methods used to reconstruct spectra from NUS data are nonlinear, depend on the complexity and nature of the signals, and lack quantitative or formal theory describing their performance. Seemingly subtle algorithmic differences may lead to significant variabilities in spectral qualities and artifacts. A community-based critical assessment of NUS challenge problems has been initiated, called the "Nonuniform Sampling Contest" (NUScon), with the objective of determining best practices for processing and analyzing NUS experiments. We address this objective by constructing challenges from NMR experiments that we inject with synthetic signals, and we process these challenges using workflows submitted by the community. In the initial rounds of NUScon our aim is to establish objective criteria for evaluating the quality of spectral reconstructions. We present here a software package for performing the quantitative analyses, and we present the results from the first two rounds of NUScon. We discuss the challenges that remain and present a roadmap for continued community-driven development with the ultimate aim of providing best practices in this rapidly evolving field. The NUScon software package and all data from evaluating the challenge problems are hosted on the NMRbox platform.

15.
Bioinformatics ; 25(6): 838-40, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19188191

RESUMO

UNLABELLED: SciMiner is a web-based literature mining and functional analysis tool that identifies genes and proteins using a context specific analysis of MEDLINE abstracts and full texts. SciMiner accepts a free text query (PubMed Entrez search) or a list of PubMed identifiers as input. SciMiner uses both regular expression patterns and dictionaries of gene symbols and names compiled from multiple sources. Ambiguous acronyms are resolved by a scoring scheme based on the co-occurrence of acronyms and corresponding description terms, which incorporates optional user-defined filters. Functional enrichment analyses are used to identify highly relevant targets (genes and proteins), GO (Gene Ontology) terms, MeSH (Medical Subject Headings) terms, pathways and protein-protein interaction networks by comparing identified targets from one search result with those from other searches or to the full HGNC [HUGO (Human Genome Organization) Gene Nomenclature Committee] gene set. The performance of gene/protein name identification was evaluated using the BioCreAtIvE (Critical Assessment of Information Extraction systems in Biology) version 2 (Year 2006) Gene Normalization Task as a gold standard. SciMiner achieved 87.1% recall, 71.3% precision and 75.8% F-measure. SciMiner's literature mining performance coupled with functional enrichment analyses provides an efficient platform for retrieval and summary of rich biological information from corpora of users' interests. AVAILABILITY: http://jdrf.neurology.med.umich.edu/SciMiner/. A server version of the SciMiner is also available for download and enables users to utilize their institution's journal subscriptions. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Genes , Proteínas/fisiologia , PubMed , Software , Armazenamento e Recuperação da Informação/métodos , Internet , MEDLINE , Publicações , Estados Unidos
16.
J Magn Reson ; 311: 106671, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31951863

RESUMO

The goal of nonuniform sampling (NUS) is to select a subset of free induction decays (FIDs) from the conventional, uniform grid in a manner that sufficiently samples short evolution times needed for improved sensitivity and long evolution times needed for enhanced resolution. In addition to specifying the number of FIDs to be collected from a uniform grid, NUS schemes also specify the distribution of the selected FIDs, which directly impacts sampling-induced artifacts. Sampling schemes typically address these heuristic guidelines by utilizing a probability density function (PDF) to bias the distribution of sampled evolution times. Given this common approach, schemes differentiate themselves by how the evolution times are distributed within the envelope of the PDF. Here, we employ maximum entropy reconstruction and utilize in situ receiver operating characteristic (IROC) to conduct a critical comparison of the sensitivity and resolution that can be achieved by three types of biased sampling schemes: exponential (PDF is exponentially decaying), Poisson-gap (PDF derived from a sine function), and quantile-directed (PDF defined by simple polynomial decay). This methodology reveals practical insights and trends regarding how the sampling schemes and bias can provide the highest sensitivity and resolution for two nonuniformly sampled dimensions in a three-dimensional biomolecular NMR experiment. The IROC analysis circumvents the limitations of common metrics when used with nonlinear spectral estimation (a characteristic of all methods used with NUS) by quantifying the spectral quality via synthetic signals that are added to the empirical dataset. Recovery of these synthetic signals provides a proxy for the quality of the empirical portion of the spectrum. The central finding is that differences in spectral quality are primarily driven by the strength of bias in the PDF. In addition, a sampling coverage threshold is observed that appears to be connected to the dependence of each NUS method on its random seed. The differences between sampling schemes and biases are most relevant below 20% coverage where seed-dependence is high, whereas at higher coverages, the performance metrics for all of the sampling schemes begin to converge and approach a seed-independent regime. The results presented here show that aggressive sampling at low coverage can produce high-quality spectra by employing a sampling scheme that adheres to a decaying PDF with a bias to a broad range of short evolution times and includes relatively few FIDs at long evolution times.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Algoritmos , Simulação por Computador , Entropia , Humanos , Distribuição de Poisson , Teoria da Probabilidade , Antígeno Nuclear de Célula em Proliferação/química , Curva ROC , Sensibilidade e Especificidade , Razão Sinal-Ruído
17.
Proteins ; 74(3): 760-76, 2009 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18712827

RESUMO

Computational models provide insight into the structure-function relationship in proteins. These approaches, especially those based on normal mode analysis, can identify the accessible motion space around a given equilibrium structure. The large magnitude, collective motions identified by these methods are often well aligned with the general direction of the expected conformational transitions. However, these motions cannot realistically be extrapolated beyond the local neighborhood of the starting conformation. In this article, the iterative cluster-NMA (icNMA) method is presented for traversing the energy landscape from a starting conformation to a desired goal conformation. This is accomplished by allowing the evolving geometry of the intermediate structures to define the local accessible motion space, and thus produce an appropriate displacement. Following the derivation of the icNMA method, a set of sample simulations are performed to probe the robustness of the model. A detailed analysis of beta1,4-galactosyltransferase-T1 is also given, to highlight many of the capabilities of icNMA. Remarkably, during the transition, a helix is seen to be extended by an additional turn, emphasizing a new unknown role for secondary structures to absorb slack during transitions. The transition pathway for adenylate kinase, which has been frequently studied in the literature, is also discussed.


Assuntos
Conformação Proteica , Análise por Conglomerados , Biologia Computacional , Simulação por Computador , Bases de Dados de Proteínas , Dobramento de Proteína , Proteínas/química
18.
J Phys Chem B ; 113(19): 6613-22, 2009 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-19378962

RESUMO

Understanding and controlling biological function of proteins at the atomic level is of great importance; allosteric mechanisms provide such an interface. Experimental and computational methods have been developed to search for residue mutations that produce changes in function by altering sites of correlated motion. These methods are often observational in that altered motions are achieved by random sampling without revealing the underlying mechanism(s). We present two deterministic methods founded on structure-function relationships that predict dynamic control sites (i.e., locations that experience correlated motions as a result of altered dynamics). The first method ("static") is based on a single structure conformation (e.g., the wild type (WT)) and utilizes a graph description of atomic connectivity. The local atomic interactions are used to compute the propagation of contact paths. This description of structure connectivity reveals flexible locations that are susceptible to altered dynamics. The second method ("dynamic") is a comparative analysis between the normal modes of a WT structure and a mutant structure. A mapping function is defined that quantifies the significance of the motions in one structure projected onto the motions of the other. Each mode is considered up- or down-regulated according to its change in relative significance. This description of altered dynamics is the basis for a motion correlation analysis, from which the dynamic control sites are readily identified. The methods are theoretically derived and applied using the canonical system dihydrofolate reductase (DHFR). Both methods demonstrate a very high predictive value (p<0.005) in identifying known dynamic control sites. The dynamic method also produces a new hypothesis regarding the mechanism by which the DHFR mutant achieves hyperactivity. These tools are suitable for allosteric investigations and may greatly enhance the speed and effectiveness of other computational and experimental methods.


Assuntos
Modelos Moleculares , Proteínas/química , Proteínas/metabolismo , Simulação por Computador , Movimento , Mutação , Conformação Proteica , Proteínas/genética , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo
19.
Amyotroph Lateral Scler ; 10(2): 63-73, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18608100

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects both upper and lower motorneurons (MN) resulting in weakness, paralysis and subsequent death. Insulin-like growth factor-I (IGF-I) is a potent neurotrophic factor that has neuroprotective properties in the central and peripheral nervous systems. Due to the efficacy of IGF-I in the treatment of other diseases and its ability to promote neuronal survival, IGF-I is being extensively studied in ALS therapeutic trials. This review covers in vitro and in vivo studies examining the efficacy of IGF-I in ALS model systems and also addresses the mechanisms by which IGF-I asserts its effects in these models, the status of the IGF-I system in ALS patients, results of clinical trials, and the need for the development of better delivery mechanisms to maximize IGF-I efficacy. The knowledge obtained from these studies suggests that IGF-I has the potential to be a safe and efficacious therapy for ALS.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/fisiopatologia , Fator de Crescimento Insulin-Like I/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos
20.
Methods Mol Biol ; 1688: 341-352, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29151216

RESUMO

A general approach to accelerating multidimensional NMR experiments via nonuniform sampling and maximum entropy spectral reconstruction was first demonstrated by Laue and colleagues in 1987. Following decades of continual improvements involving dozens of software packages for non-Fourier spectral analysis and many different schemes for nonuniform sampling, we still lack a clear consensus on best practices for sampling or spectral reconstruction, and programs for processing nonuniformly sampled data are not particularly user-friendly. Nevertheless, it is possible to discern conservative and general guidelines for nonuniform sampling and spectral reconstruction. Here, we describe a robust semi-automated workflow that employs these guidelines for simplifying the selection of a sampling schedule and the processing of the resulting nonuniformly sampled multidimensional NMR data. Our approach is based on NMRbox, a shared platform for NMR software that facilitates workflow development and execution, and enables rapid comparison of alternate approaches.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Software , Manejo de Espécimes/métodos , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA