Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2303794120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844230

RESUMO

ß-arrestins are multivalent adaptor proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) to inhibit G protein signaling, mediate receptor internalization, and initiate alternative signaling events. ß-arrestins link agonist-stimulated GPCRs to downstream signaling partners, such as the c-Raf-MEK1-ERK1/2 cascade leading to ERK1/2 activation. ß-arrestins have been thought to transduce signals solely via passive scaffolding by facilitating the assembly of multiprotein signaling complexes. Recently, however, ß-arrestin 1 and 2 were shown to activate two downstream signaling effectors, c-Src and c-Raf, allosterically. Over the last two decades, ERK1/2 have been the most intensely studied signaling proteins scaffolded by ß-arrestins. Here, we demonstrate that ß-arrestins play an active role in allosterically modulating ERK kinase activity in vitro and within intact cells. Specifically, we show that ß-arrestins and their GPCR-mediated active states allosterically enhance ERK2 autophosphorylation and phosphorylation of a downstream ERK2 substrate, and we elucidate the mechanism by which ß-arrestins do so. Furthermore, we find that allosteric stimulation of dually phosphorylated ERK2 by active-state ß-arrestin 2 is more robust than by active-state ß-arrestin 1, highlighting differential capacities of ß-arrestin isoforms to regulate effector signaling pathways downstream of GPCRs. In summary, our study provides strong evidence for a new paradigm in which ß-arrestins function as active "catalytic" scaffolds to allosterically unlock the enzymatic activity of signaling components downstream of GPCR activation.


Assuntos
Arrestinas , Transdução de Sinais , beta-Arrestinas/metabolismo , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Arrestinas/metabolismo , Regulação Alostérica , Transdução de Sinais/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Fosforilação , beta-Arrestina 2/metabolismo
2.
Neurosurgery ; 93(1): 198-205, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36790207

RESUMO

BACKGROUND: The management of intracranial oncological disease remains a significant challenge despite advances in systemic cancer therapy. Laser interstitial thermal therapy (LITT) represents a novel treatment for local control of brain tumors through photocoagulation with a stereotactically implanted laser fiber. Because the use of laser interstitial thermal therapy continues to increase within neurosurgery, characterization of LITT is necessary to improve outcomes. OBJECTIVE: To quantify the risk of tumor seeding along the laser fiber tract in patients receiving LITT for primary or metastatic brain tumors at a high-volume treatment center. METHODS: We retrospectively reviewed all patients receiving LITT from 2015 to 2021 at our medical center. Patients with biopsy-confirmed tumors were included in this study. Tract seeding was identified as discontinuous, newly enhancing tumor along the LITT tract. RESULTS: Fifty-six patients received LITT for biopsy-confirmed tumors from 2015 to 2021, with tract seeding identified in 3 (5.4%). Twenty-nine (51.8%) patients had gliomas, while the remainder had metastases, of which lung was the most common histology (20 patients, 74%). Tract seeding was associated with ablation proceeding inward from superficial tumor margin closest to the cranial entry point ( P = .03). Patients with tract seeding had a shorter median time to progression of 1.1 (0.1-1.3) months vs 4.2 (2.2-8.6) months ( P = .03). CONCLUSION: Although the risk of tract seeding after LITT is reassuringly low, it is associated with decreased progression-free survival. This risk may be related to surgical technique or experience. Follow-up radiosurgery to the LITT tract has the potential to prevent this complication.


Assuntos
Neoplasias Encefálicas , Terapia a Laser , Humanos , Estudos Retrospectivos , Neoplasias Encefálicas/patologia , Intervalo Livre de Progressão , Terapia a Laser/métodos , Lasers
3.
Science ; 364(6447): 1283-1287, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31249059

RESUMO

Drugs targeting the orthosteric, primary binding site of G protein-coupled receptors are the most common therapeutics. Allosteric binding sites, elsewhere on the receptors, are less well-defined, and so less exploited clinically. We report the crystal structure of the prototypic ß2-adrenergic receptor in complex with an orthosteric agonist and compound-6FA, a positive allosteric modulator of this receptor. It binds on the receptor's inner surface in a pocket created by intracellular loop 2 and transmembrane segments 3 and 4, stabilizing the loop in an α-helical conformation required to engage the G protein. Structural comparison explains the selectivity of the compound for ß2- over the ß1-adrenergic receptor. Diversity in location, mechanism, and selectivity of allosteric ligands provides potential to expand the range of receptor drugs.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/química , Anidridos Ftálicos/química , Receptores Adrenérgicos beta 2/química , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Regulação Alostérica , Cristalografia por Raios X , Mutação com Ganho de Função , Humanos , Anidridos Ftálicos/farmacologia , Receptores Adrenérgicos beta 2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA