Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Microbiol ; 118(6): 670-682, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36285560

RESUMO

Flagella are multiprotein complexes whose assembly and positioning require complex spatiotemporal control. Flagellar assembly is thought to be controlled by several transcriptional tiers, which are mediated through various master regulators. Here, we revisited the regulation of flagellar genes in polarly flagellated gammaproteobacteria by the regulators FlrA, RpoN (σ54 ) and FliA (σ28 ) in Shewanella putrefaciens CN-32 at the transcript and protein level. We found that a number of regulatory and structural proteins were present in the absence of the main regulators, suggesting that initiation of flagella assembly and motor activation relies on the abundance control of only a few structural key components that are required for the formation of the MS- and C-ring and the flagellar type III secretion system. We identified FlrA-independent promoters driving expression of the regulators of flagellar number and positioning, FlhF and FlhG. Reduction of the gene expression levels from these promoters resulted in the emergence of hyperflagellation. This finding indicates that basal expression is required to adjust the flagellar counter in Shewanella. This is adding a deeper layer to the regulation of flagellar synthesis and assembly.


Assuntos
Shewanella putrefaciens , Shewanella , Proteínas de Bactérias/metabolismo , Shewanella putrefaciens/genética , Flagelos/metabolismo , Regiões Promotoras Genéticas/genética , Shewanella/genética , Shewanella/metabolismo , Regulação Bacteriana da Expressão Gênica/genética
2.
Proc Natl Acad Sci U S A ; 117(34): 20826-20835, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32788349

RESUMO

Bacterial flagella differ in their number and spatial arrangement. In many species, the MinD-type ATPase FlhG (also YlxH/FleN) is central to the numerical control of bacterial flagella, and its deletion in polarly flagellated bacteria typically leads to hyperflagellation. The molecular mechanism underlying this numerical control, however, remains enigmatic. Using the model species Shewanella putrefaciens, we show that FlhG links assembly of the flagellar C ring with the action of the master transcriptional regulator FlrA (named FleQ in other species). While FlrA and the flagellar C-ring protein FliM have an overlapping binding site on FlhG, their binding depends on the ATP-dependent dimerization state of FlhG. FliM interacts with FlhG independent of nucleotide binding, while FlrA exclusively interacts with the ATP-dependent FlhG dimer and stimulates FlhG ATPase activity. Our in vivo analysis of FlhG partner switching between FliM and FlrA reveals its mechanism in the numerical restriction of flagella, in which the transcriptional activity of FlrA is down-regulated through a negative feedback loop. Our study demonstrates another level of regulatory complexity underlying the spationumerical regulation of flagellar biogenesis and implies that flagellar assembly transcriptionally regulates the production of more initial building blocks.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelos/genética , Flagelos/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Bactérias/metabolismo , Fenômenos Bioquímicos , Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Shewanella putrefaciens/genética , Shewanella putrefaciens/metabolismo
3.
F1000Res ; 10: 277, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35707454

RESUMO

The search for novel drugs that efficiently eliminate prokaryotic pathogens is one of the most urgent health topics of our time. Robust evaluation methods for monitoring the antibiotic stress response in prokaryotes are therefore necessary for developing respective screening strategies. Besides advantages of common in vitro techniques, there is a growing demand for in vivo information based on imaging techniques that allow to screen antibiotic candidates in a dynamic manner. Gathering information from imaging data in a reproducible manner, robust data processing and analysis workflows demand advanced (semi-)automation and data management to increase reproducibility. Here we demonstrate a versatile and robust semi-automated image acquisition, processing and analysis workflow to investigate bacterial cell morphology in a quantitative manner. The presented workflow, A.D.I.C.T, covers aspects of experimental setup deployment, data acquisition and handling, image processing (e.g. ROI management, data transformation into binary images, background subtraction, filtering, projections) as well as statistical evaluation of the cellular stress response (e.g. shape measurement distributions, cell shape modeling, probability density evaluation of fluorescence imaging micrographs) towards antibiotic-induced stress, obtained from time-course experiments. The imaging workflow is based on regular brightfield images combined with live-cell imaging data gathered from bacteria, in our case from recombinant Shewanella cells, which are processed as binary images. The model organism expresses target proteins relevant for membrane-biogenesis that are functionally fused to respective fluorescent proteins. Data processing and analysis are based on customized scripts using ImageJ2/FIJI, Celltool and R packages that can be easily reproduced and adapted by users. Summing up, our approach aims at supporting life-scientists to establish their own imaging-pipeline in order to exploit their data as versatile as possible and in a reproducible manner.


Assuntos
Antibacterianos , Processamento de Imagem Assistida por Computador , Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Reprodutibilidade dos Testes , Fluxo de Trabalho
4.
Front Microbiol ; 12: 663747, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995327

RESUMO

We have studied the localization and dynamics of bacterial Ffh, part of the SRP complex, its receptor FtsY, and of ribosomes in the Gamma-proteobacterium Shewanella putrefaciens. Using structured illumination microscopy, we show that ribosomes show a pronounced accumulation at the cell poles, whereas SRP and FtsY are distributed at distinct sites along the cell membrane, but they are not accumulated at the poles. Single molecule dynamics can be explained by assuming that all three proteins/complexes move as three distinguishable mobility fractions: a low mobility/static fraction may be engaged in translation, medium-fast diffusing fractions may be transition states, and high mobility populations likely represent freely diffusing molecules/complexes. Diffusion constants suggest that SRP and FtsY move together with slow-mobile ribosomes. Inhibition of transcription leads to loss of static molecules and reduction of medium-mobile fractions, in favor of freely diffusing subunits, while inhibition of translation appears to stall the medium mobile fractions. Depletion of FtsY leads to aggregation of Ffh, but not to loss of the medium mobile fraction, indicating that Ffh/SRP can bind to ribosomes independently from FtsY. Heat maps visualizing the three distinct diffusive populations show that while static molecules are mostly clustered at the cell membrane, diffusive molecules are localized throughout the cytosol. The medium fast populations show an intermediate pattern of preferential localization, suggesting that SRP/FtsY/ribosome transition states may form within the cytosol to finally find a translocon.

6.
Front Microbiol ; 12: 668892, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34140945

RESUMO

A number of bacterial species control the function of the flagellar motor in response to the levels of the secondary messenger c-di-GMP, which is often mediated by c-di-GMP-binding proteins that act as molecular brakes or clutches to slow the motor rotation. The gammaproteobacterium Shewanella putrefaciens possesses two distinct flagellar systems, the primary single polar flagellum and a secondary system with one to five lateral flagellar filaments. Here, we identified a protein, MotL, which specifically regulates the activity of the lateral, but not the polar, flagellar motors in response to the c-di-GMP levels. MotL only consists of a single PilZ domain binding c-di-GMP, which is crucial for its function. Deletion and overproduction analyses revealed that MotL slows down the lateral flagella at elevated levels of c-di-GMP, and may speed up the lateral flagellar-mediated movement at low c-di-GMP concentrations. In vitro interaction studies hint at an interaction of MotL with the C-ring of the lateral flagellar motors. This study shows a differential c-di-GMP-dependent regulation of the two flagellar systems in a single species, and implicates that PilZ domain-only proteins can also act as molecular regulators to control the flagella-mediated motility in bacteria.

7.
Front Microbiol ; 11: 564161, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33384667

RESUMO

Flagella are bacterial organelles of locomotion. Their biogenesis is highly coordinated in time and space and relies on a specialized flagellar type III secretion system (fT3SS) required for the assembly of the extracellular hook, rod, and filament parts of this complex motor device. The fT3SS protein FlhB switches secretion substrate specificity once the growing hook reaches its determined length. Here we present the crystal structure of the cytoplasmic domain of the transmembrane protein FlhB. The structure visualizes a so-far unseen proline-rich region (PRR) at the very C-terminus of the protein. Strains lacking the PRR show a decrease in flagellation as determined by hook- and filament staining, indicating a role of the PRR during assembly of the hook and filament structures. Phylogenetic analysis shows that the PRR is a primary feature of FlhB proteins of flagellated beta- and gamma-proteobacteria. Taken together, our study adds another layer of complexity and organismic diversity to the process of flagella biogenesis.

8.
FEBS J ; 285(2): 339-356, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29156487

RESUMO

Ferredoxin-dependent bilin reductases (FDBRs) are a class of enzymes reducing the heme metabolite biliverdin IXα (BV) to form open-chain tetrapyrroles used for light-perception and light-harvesting in photosynthetic organisms. Thus far, seven FDBR families have been identified, each catalysing a distinct reaction and either transferring two or four electrons from ferredoxin onto the substrate. The newest addition to the family is PcyX, originally identified from metagenomics data derived from phage. Phylogenetically, PcyA is the closest relative catalysing the reduction of BV to phycocyanobilin. PcyX, however, converts the same substrate to phycoerythrobilin, resembling the reaction catalysed by cyanophage PebS. Within this study, we aimed at understanding the evolution of catalytic activities within FDBRs using PcyX as an example. Additional members of the PcyX clade and a remote member of the PcyA family were investigated to gain insights into catalysis. Biochemical data in combination with the PcyX crystal structure revealed that a conserved aspartate-histidine pair is critical for activity. Interestingly, the same residues are part of a catalytic Asp-His-Glu triad in PcyA, including an additional Glu. While this Glu residue is replaced by Asp in PcyX, it is not involved in catalysis. Substitution back to a Glu failed to convert PcyX to a PcyA. Therefore, the change in regiospecificity is not only caused by individual catalytic amino acid residues. Rather the combination of the architecture of the active site with the positioning of the substrate triggers specific proton transfer yielding the individual phycobilin products. ENZYMES: Suggested EC number for PcyX: 1.3.7.6 DATABASES: The PcyX X-ray structure was deposited in the PDB with the accession code 5OWG.


Assuntos
Bacteriófagos/enzimologia , Pigmentos Biliares/metabolismo , Evolução Molecular , Ferredoxinas/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Asparagina/metabolismo , Catálise , Cristalografia por Raios X , Metionina/metabolismo , Mutagênese Sítio-Dirigida , Oceanos e Mares , Oxirredutases/química , Filogenia , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA