Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Cell ; 81(21): 4540-4551.e6, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34433091

RESUMO

Within the extensive range of self-propagating pathologic protein aggregates of mammals, prions are the most clearly infectious (e.g., ∼109 lethal doses per milligram). The structures of such lethal assemblies of PrP molecules have been poorly understood. Here we report a near-atomic core structure of a brain-derived, fully infectious prion (263K strain). Cryo-electron microscopy showed amyloid fibrils assembled with parallel in-register intermolecular ß sheets. Each monomer provides one rung of the ordered fibril core, with N-linked glycans and glycolipid anchors projecting outward. Thus, single monomers form the templating surface for incoming monomers at fibril ends, where prion growth occurs. Comparison to another prion strain (aRML) revealed major differences in fibril morphology but, like 263K, an asymmetric fibril cross-section without paired protofilaments. These findings provide structural insights into prion propagation, strains, species barriers, and membrane pathogenesis. This structure also helps frame considerations of factors influencing the relative transmissibility of other pathologic amyloids.


Assuntos
Encéfalo/metabolismo , Microscopia Crioeletrônica/métodos , Polissacarídeos/química , Príons/química , Príons/ultraestrutura , Amiloide/química , Animais , Glicolipídeos/química , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Camundongos , Fenótipo , Proteínas Priônicas/química , Ligação Proteica , Estrutura Secundária de Proteína , Termodinâmica
2.
PLoS Pathog ; 18(11): e1010947, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36342968

RESUMO

Prion strains in a given type of mammalian host are distinguished by differences in clinical presentation, neuropathological lesions, survival time, and characteristics of the infecting prion protein (PrP) assemblies. Near-atomic structures of prions from two host species with different PrP sequences have been determined but comparisons of distinct prion strains of the same amino acid sequence are needed to identify purely conformational determinants of prion strain characteristics. Here we report a 3.2 Å resolution cryogenic electron microscopy-based structure of the 22L prion strain purified from the brains of mice engineered to express only PrP lacking glycophosphatidylinositol anchors [anchorless (a) 22L]. Comparison of this near-atomic structure to our recently determined structure of the aRML strain propagated in the same inbred mouse reveals that these two mouse prion strains have distinct conformational templates for growth via incorporation of PrP molecules of the same sequence. Both a22L and aRML are assembled as stacks of PrP molecules forming parallel in-register intermolecular ß-sheets and intervening loops, with single monomers spanning the ordered fibril core. Each monomer shares an N-terminal steric zipper, three major arches, and an overall V-shape, but the details of these and other conformational features differ markedly. Thus, variations in shared conformational motifs within a parallel in-register ß-stack fibril architecture provide a structural basis for prion strain differentiation within a single host genotype.


Assuntos
Príons , Animais , Camundongos , Microscopia Crioeletrônica , Genótipo , Proteínas Priônicas/genética , Príons/metabolismo , Conformação Proteica
3.
J Eukaryot Microbiol ; 70(6): e12989, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37300520

RESUMO

Tritrichomonas muris is a common flagellated protist isolated from the cecum of wild rodents. This commensal protist has been shown previously to alter immune phenotypes in laboratory mice. Other trichomonads, referred to as Tritrichomonas musculis and Tritrichomonas rainier, also naturally colonize laboratory mice and cause immune alterations. This report formally describes two new trichomonads, Tritrichomonas musculus n. sp., and Tritrichomonas casperi n. sp., at the ultrastructural and molecular level. These two protists were isolated from laboratory mice and were differentiated by their size and the structure of their undulating membrane and posterior flagellum. Analysis at the 18S rRNA and trans-ITS genetic loci supported their designation as distinct species, related to T. muris. To assess the true extent of parabasalid diversity infecting laboratory mice, 135 mice bred at the National Institutes of Health (NIH) were screened using pan-parabasalid primers that amplify the trans-ITS region. Forty-four percent of mice were positive for parabasalids, encompassing a total of eight distinct sequence types. Tritrichomonas casperi and Trichomitus-like protists were dominant. T. musculus and T. rainier were also detected, but T. muris was not. Our work establishes a previously underappreciated diversity of commensal trichomonad flagellates that naturally colonize the enteric cavity of laboratory mice.


Assuntos
Parabasalídeos , Trichomonadida , Tritrichomonas , Animais , Camundongos , Tritrichomonas/ultraestrutura , Trichomonadida/genética , Eucariotos , Flagelos/ultraestrutura
4.
Proc Natl Acad Sci U S A ; 114(51): E11001-E11009, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29203656

RESUMO

The long-standing inability to visualize connections between poxvirus membranes and cellular organelles has led to uncertainty regarding the origin of the viral membrane. Indeed, there has been speculation that viral membranes form de novo in cytoplasmic factories. Another possibility, that the connections are too short-lived to be captured by microscopy during a normal infection, motivated us to identify and characterize virus mutants that are arrested in assembly. Five conserved vaccinia virus proteins, referred to as Viral Membrane Assembly Proteins (VMAPs), that are necessary for formation of immature virions were found. Transmission electron microscopy studies of two VMAP deletion mutants had suggested retention of connections between viral membranes and the endoplasmic reticulum (ER). We now analyzed cells infected with each of the five VMAP deletion mutants by electron tomography, which is necessary to validate membrane continuity, in addition to conventional transmission electron microscopy. In all cases, connections between the ER and viral membranes were demonstrated by 3D reconstructions, supporting a role for the VMAPs in creating and/or stabilizing membrane scissions. Furthermore, coexpression of the viral reticulon-like transmembrane protein A17 and the capsid-like scaffold protein D13 was sufficient to form similar ER-associated viral structures in the absence of other major virion proteins. Determination of the mechanism of ER disruption during a normal VACV infection and the likely participation of both viral and cell proteins in this process may provide important insights into membrane dynamics.


Assuntos
Retículo Endoplasmático/metabolismo , Imageamento Tridimensional , Vaccinia virus/fisiologia , Proteínas da Matriz Viral/metabolismo , Montagem de Vírus , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/ultraestrutura , Mutação , Deleção de Sequência , Vaccinia virus/ultraestrutura , Proteínas da Matriz Viral/genética , Vírion
5.
Mol Microbiol ; 108(1): 77-89, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29363884

RESUMO

Leptospires and other members of the evolutionarily ancient phylum of Spirochaetes are bacteria often characterized by long, highly motile spiral- or wave-shaped cells. Morphology and motility are critical factors in spirochete physiology, contributing to the ability of these bacteria to successfully colonize diverse environments. However, the mechanisms conferring the helical structure of Leptospira spp. have yet to be fully elucidated. We have identified five Leptospira biflexa bactofilin proteins, a recently characterized protein family with cytoskeletal properties. These five bactofilins are conserved in all species of the Leptospiraceae, indicating that these proteins arose early in the evolution of this family. One member of this protein family, LbbD, confers the optimal pitch distance in the helical structure of L. biflexa. Mutants lacking lbbD display a unique compressed helical morphology, a reduced motility and a decreased ability to tolerate cell wall stressors. The change in the helical spacing, combined with the motility and cell wall integrity defects, showcases the intimate relationship and coevolution between shape and motility in these spirochetes.


Assuntos
Proteínas de Bactérias/fisiologia , Leptospira/citologia , Leptospira/fisiologia , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Evolução Biológica , Parede Celular/química , Parede Celular/metabolismo , Expressão Ectópica do Gene , Leptospira/genética , Pressão Osmótica , Filogenia , Plasmídeos , Deleção de Sequência
6.
J Virol ; 92(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29046461

RESUMO

Varicella-zoster virus (VZV) is highly cell associated when grown in culture and has a much higher (4,000- to 20,000-fold increased) particle-to-PFU ratio in vitro than herpes simplex virus (HSV). In contrast, VZV is highly infectious in vivo by airborne transmission. Neurons are major targets for VZV in vivo; in neurons, the virus can establish latency and reactivate to produce infectious virus. Using neurons derived from human embryonic stem cells (hESC) and cell-free wild-type (WT) VZV, we demonstrated that neurons are nearly 100 times more permissive for WT VZV infection than very-early-passage human embryonic lung cells or MRC-5 diploid human fibroblasts, the cells used for vaccine production or virus isolation. The peak titers achieved after infection were ∼10-fold higher in human neurons than in MRC-5 cells, and the viral genome copy number-to-PFU ratio for VZV in human neurons was 500, compared with 50,000 for MRC-5 cells. Thus, VZV may not necessarily have a higher particle-to-PFU ratio than other herpesviruses; instead, the cells previously used to propagate virus in vitro may have been suboptimal. Furthermore, based on electron microscopy, neurons infected with VZV produced fewer defective or incomplete viral particles than MRC-5 cells. Our data suggest that neurons derived from hESC may have advantages compared to other cells for studies of VZV pathogenesis, for obtaining stocks of virus with high titers, and for isolating VZV from clinical specimens.IMPORTANCE Varicella-zoster virus (VZV) causes chickenpox and shingles. Cell-free VZV has been difficult to obtain, both for in vitro studies and for vaccine production. While numerous cells lines have been tested for their ability to produce high titers of VZV, the number of total virus particles relative to the number of viral particles that can form plaques in culture has been reported to be extremely high relative to that in other viruses. We show that VZV grows to much higher titers in human neurons than in other cell types in vitro and that the number of total virus genomes relative to the number of viral particles that can form plaques in culture is much lower in human neurons than other cultured cells. These findings indicate that human neurons may be useful for studying VZV in vitro, for growing preparations of virus with high titers, and for isolating the virus from human samples.


Assuntos
Herpesvirus Humano 3/isolamento & purificação , Herpesvirus Humano 3/fisiologia , Células-Tronco Embrionárias Humanas/fisiologia , Neurônios/virologia , Replicação Viral , Linhagem Celular , Células Cultivadas , Fibroblastos/virologia , Genoma Viral , Herpesvirus Humano 3/crescimento & desenvolvimento , Herpesvirus Humano 3/patogenicidade , Humanos , Microscopia Eletrônica , Neurônios/ultraestrutura , Virologia/métodos , Ativação Viral , Latência Viral
7.
J Virol ; 91(21)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794042

RESUMO

The highly conserved cytoplasmic tail of influenza virus glycoprotein hemagglutinin (HA) contains three cysteines, posttranslationally modified by covalently bound fatty acids. While viral HA acylation is crucial in virus replication, its physico-chemical role is unknown. We used virus-like particles (VLP) to study the effect of acylation on morphology, protein incorporation, lipid composition, and membrane fusion. Deacylation interrupted HA-M1 interactions since deacylated mutant HA failed to incorporate an M1 layer within spheroidal VLP, and filamentous particles incorporated increased numbers of neuraminidase (NA). While HA acylation did not influence VLP shape, lipid composition, or HA lateral spacing, acylation significantly affected envelope curvature. Compared to wild-type HA, deacylated HA is correlated with released particles with flat envelope curvature in the absence of the matrix (M1) protein layer. The spontaneous curvature of palmitate was calculated by molecular dynamic simulations and was found to be comparable to the curvature values derived from VLP size distributions. Cell-cell fusion assays show a strain-independent failure of fusion pore enlargement among H2 (A/Japan/305/57), H3 (A/Aichi/2/68), and H3 (A/Udorn/72) viruses. In contradistinction, acylation made no difference in the low-pH-dependent fusion of isolated VLPs to liposomes: fusion pores formed and expanded, as demonstrated by the presence of complete fusion products observed using cryo-electron tomography (cryo-ET). We propose that the primary mechanism of action of acylation is to control membrane curvature and to modify HA's interaction with M1 protein, while the stunting of fusion by deacylated HA acting in isolation may be balanced by other viral proteins which help lower the energetic barrier to pore expansion.IMPORTANCE Influenza A virus is an airborne pathogen causing seasonal epidemics and occasional pandemics. Hemagglutinin (HA), a glycoprotein abundant on the virion surface, is important in both influenza A virus assembly and entry. HA is modified by acylation whose removal abrogates viral replication. Here, we used cryo-electron tomography to obtain three-dimensional images to elucidate a role for HA acylation in VLP assembly. Our data indicate that HA acylation contributes to the capability of HA to bend membranes and to HA's interaction with the M1 scaffold protein during virus assembly. Furthermore, our data on VLP and, by hypothesis, virus suggests that HA acylation, while not critical to fusion pore formation, contributes to pore expansion in a target-dependent fashion.


Assuntos
Membrana Celular/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/fisiologia , Lipoilação/fisiologia , Fusão de Membrana , Montagem de Vírus/fisiologia , Acilação , Animais , Membrana Celular/metabolismo , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Vírion/fisiologia , Replicação Viral
8.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836840

RESUMO

SAR11 bacteria are small, heterotrophic, marine alphaproteobacteria found throughout the oceans. They thrive at the low nutrient concentrations typical of open ocean conditions, although the adaptations required for life under those conditions are not well understood. To illuminate this issue, we used cryo-electron tomography to study "Candidatus Pelagibacter ubique" strain HTCC1062, a member of the SAR11 clade. Our results revealed its cellular dimensions and details of its intracellular organization. Frozen-hydrated cells, which were preserved in a life-like state, had an average cell volume (enclosed by the outer membrane) of 0.037 ± 0.011 µm3 Strikingly, the periplasmic space occupied ∼20% to 50% of the total cell volume in log-phase cells and ∼50% to 70% in stationary-phase cells. The nucleoid occupied the convex side of the crescent-shaped cells and the ribosomes predominantly occupied the concave side, at a relatively high concentration of 10,000 to 12,000 ribosomes/µm3 Outer membrane pore complexes, likely composed of PilQ, were frequently observed in both log-phase and stationary-phase cells. Long filaments, most likely type IV pili, were found on dividing cells. The physical dimensions, intracellular organization, and morphological changes throughout the life cycle of "Ca. Pelagibacter ubique" provide structural insights into the functional adaptions of these oligotrophic ultramicrobacteria to their habitat. IMPORTANCE: Bacterioplankton of the SAR11 clade (Pelagibacterales) are of interest because of their global biogeochemical significance and because they appear to have been molded by unusual evolutionary circumstances that favor simplicity and efficiency. They have adapted to an ecosystem in which nutrient concentrations are near the extreme limits at which transport systems can function adequately, and they have evolved streamlined genomes to execute only functions essential for life. However, little is known about the actual size limitations and cellular features of living oligotrophic ultramicrobacteria. In this study, we have used cryo-electron tomography to obtain accurate physical information about the cellular architecture of "Candidatus Pelagibacter ubique," the first cultivated member of the SAR11 clade. These results provide foundational information for answering questions about the cell architecture and functions of these ultrasmall oligotrophic bacteria.


Assuntos
Alphaproteobacteria/ultraestrutura , Alphaproteobacteria/fisiologia , Tomografia com Microscopia Eletrônica , Água do Mar/microbiologia
9.
J Struct Biol ; 194(1): 38-48, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26821343

RESUMO

Giardia lamblia is a protistan parasite that infects and colonizes the small intestine of mammals. It is widespread and particularly endemic in the developing world. Here we present a detailed structural study by 3-D negative staining and cryo-electron tomography of a unique Giardia organelle, the ventral disc. The disc is composed of a regular array of microtubules and associated sheets, called microribbons that form a large spiral, held together by a myriad of mostly unknown associated proteins. In a previous study we analyzed by cryo-electron tomography the central microtubule portion (here called disc body) of the ventral disc and found a large portion of microtubule associated inner (MIPs) and outer proteins (MAPs) that render these microtubules hyper-stable. With this follow-up study we expanded our 3-D analysis to different parts of the disc such as the ventral and dorsal areas of the overlap zone, as well as the outer disc margin. There are intrinsic location-specific characteristics in the composition of microtubule-associated proteins between these regions, as well as large differences between the overall architecture of microtubules and microribbons. The lateral packing of microtubule-microribbon complexes varies substantially, and closer packing often comes with contracted lateral tethers that seem to hold the disc together. It appears that the marginal microtubule-microribbon complexes function as outer, laterally contractible lids that may help the cell to clamp onto the intestinal microvilli. Furthermore, we analyzed length, quantity, curvature and distribution between different zones of the disc, which we found to differ from previous publications.


Assuntos
Microscopia Crioeletrônica/métodos , Citoesqueleto/ultraestrutura , Tomografia com Microscopia Eletrônica/métodos , Giardia lamblia/ultraestrutura , Microtúbulos/ultraestrutura , Trofozoítos/ultraestrutura , Animais , Giardia lamblia/citologia , Giardia lamblia/fisiologia , Giardíase/parasitologia , Interações Hospedeiro-Parasita , Imageamento Tridimensional/métodos , Intestinos/citologia , Intestinos/parasitologia , Intestinos/ultraestrutura , Microvilosidades/parasitologia , Microvilosidades/ultraestrutura , Trofozoítos/fisiologia
10.
Curr Protoc ; 4(5): e1034, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38717581

RESUMO

Scanning electron microscopy (SEM) remains distinct in its ability to allow topographical visualization of structures. Key elements to consider for successful examination of biological specimens include appropriate preparative and imaging techniques. Chemical processing induces structural artifacts during specimen preparation, and several factors need to be considered when selecting fixation protocols to reduce these effects while retaining structures of interest. Particular care for proper dehydration of specimens is essential to minimize shrinkage and is necessary for placement under the high-vacuum environment required for routine operation of standard SEMs. Choice of substrate for mounting and coating specimens can reduce artifacts known as charging, and a basic understanding of microscope settings can optimize parameters to achieve desired results. This article describes fundamental techniques and tips for routine specimen preparation for a variety of biological specimens, preservation of labile or fragile structures, immune-labeling strategies, and microscope imaging parameters for optimal examination by SEM. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Chemical preparative techniques for preservation of biological specimens for examination by SEM Alternate Protocol 1: Practical considerations for the preparation of soft tissues Alternate Protocol 2: Removal of debris from the exoskeleton of invertebrates Alternate Protocol 3: Fixation of colonies grown on agar plates Alternate Protocol 4: Stabilization of polysaccharide structures with alcian blue and lysine Alternate Protocol 5: Preparation of non-adherent particulates in solution for SEM Support Protocol 1: Application of thin layer of adhesive on substrate to improve adherence Support Protocol 2: Poly-L-lysine coating specimen substrates for improved adherence Support Protocol 3: Microwave processing of biological specimens for examination by SEM Basic Protocol 2: Critical point drying of specimens Alternate Protocol 6: Chemical alternative to critical point drying Basic Protocol 3: Sputter coating Alternate Protocol 7: Improved bulk conductivity through "OTOTO" Basic Protocol 4: Immune-labeling strategies Alternate Protocol 8: Immune-labeling internal antigens with small gold probes Alternate protocol 9: Quantum dot or fluoronanogold preparations for correlative techniques Basic Protocol 5: Exposure of internal structures by mechanical fracturing Basic Protocol 6: Exposure of internal structures of tissues by fracturing with liquid nitrogen Basic Protocol 7: Anaglyph production from stereo pairs to produce 3D images.


Assuntos
Microscopia Eletrônica de Varredura , Manejo de Espécimes , Microscopia Eletrônica de Varredura/métodos , Manejo de Espécimes/métodos , Animais
11.
Sci Rep ; 14(1): 12466, 2024 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816418

RESUMO

Blood-feeding behavior has independently evolved in arthropods multiple times. Unlike hard ticks, soft ticks employ a rapid-feeding strategy for hematophagy, and there are comparatively limited studies on the transcriptomes of these organisms. This study investigates the soft tick Ornithodoros hermsi, conducting histopathological examinations at bitten skin sites and tick whole-body transcriptomic analyses across various developmental and feeding stages, including larvae, 1st-nymphal, and 2nd-nymphal stages. The results revealed the ability of O. hermsi to induce skin hemorrhage at the bite sites. Transcriptomic analyses identified three consistent transcriptional profiles: unfed, early-fed (6 h, 12 h, 24 h), and late-fed (5 days). The unfed profile exhibited high transcriptional activity across most of the functional classes annotated. In contrast, early-fed stages exhibited decreased expression of most functional classes, except for the unknown, which is highly expressed. Finally, transcriptional expression of most functional classes increased in the late-fed groups, resembling the baseline expression observed in the unfed groups. These findings highlight intense pre-feeding transcriptional activity in O. hermsi ticks, aligning with their rapid-feeding strategy. Moreover, besides shedding light on the temporal dynamics of key pathways during blood meal processing and tick development, this study contributes significantly to the transcriptome repertoire of a medically relevant soft tick species with relatively limited prior knowledge.


Assuntos
Ornithodoros , Febre Recorrente , Transcriptoma , Animais , Ornithodoros/genética , Ornithodoros/crescimento & desenvolvimento , Febre Recorrente/microbiologia , Larva/genética , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Comportamento Alimentar
12.
Ticks Tick Borne Dis ; 15(2): 102301, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38134511

RESUMO

A bite from an infected tick is the primary means of transmission for tick-borne flaviviruses (TBFV). Ticks ingest the virus while feeding on infected blood. The traditional view is that the virus first replicates in and transits the tick midgut prior to dissemination to other organs, including salivary glands. Thus, understanding TBFV infection in the tick midgut is a key first step in identifying potential countermeasures against infection. Ex vivo midgut cultures prepared from unfed adult female Ixodes scapularis ticks were viable and remained morphologically intact for more than 8 days. The midgut consisted of two clearly defined cell layers separated by a basement membrane: an exterior network of smooth muscle cells and an internal epithelium composed of digestive generative cells. The smooth muscle cells were arranged in a stellate circumferential pattern spaced at regular intervals along the long axis of midgut diverticula. When the cultures were infected with the TBFV Langat virus (LGTV), virus production increased by two logs with a peak at 96 hours post-infection. Infected cells were readily identified by immunofluorescence staining for the viral envelope protein, nonstructural protein 3 (NS3) and dsRNA. Microscopy of the stained cultures suggested that generative cells were the primary target for virus infection in the midgut. Infected cells exhibited an expansion of membranes derived from the endoplasmic reticulum; a finding consistent with TBFV infected cell cultures. Electron microscopy of infected cultures revealed virus particles in the basolateral region between epithelial cells. These results demonstrated LGTV replication in midgut generative cells of artificially infected, ex vivo cultures of unfed adult female I. scapularis ticks.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Flavivirus , Ixodes , Feminino , Animais , Flavivirus/genética , Vírus da Encefalite Transmitidos por Carrapatos/genética , Glândulas Salivares , Microscopia Eletrônica , RNA de Cadeia Dupla
13.
bioRxiv ; 2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36789430

RESUMO

Tritrichomonas muris is a flagellated protist isolated from the cecum of wild mice in the Czech Republic. This commensal protist has been shown previously to alter immune phenotypes in laboratory mice. Other trichomonads, previously referred to as Tritrichomonas musculis and Tritrichomonas rainier , also naturally colonize laboratory mice and cause immune alterations. This report formally describes two new trichomonads, Tritrichomonas musculus n. sp., and Tritrichomonas casperi n. sp., at the ultrastructural and molecular level. These two protists were isolated from laboratory mice, and were differentiated by their size and the structure of their undulating membrane and posterior flagellum. Analysis at the 18S rRNA and trans- ITS genetic loci supported their designation as distinct species, related to T. muris . To further assess the true extent of parabasalid diversity infecting laboratory mice, 135 mice were screened at the NIH using pan-parabasalid primers that amplify the trans- ITS region. Forty-four percent of mice were positive for parabasalids, encompassing a total of 8 distinct sequence types. Tritrichomonas casperi and Trichomitus- like protists were dominant. T. musculus and T. rainier were also detected, but T. muris was not. Our work establishes a previously underappreciated diversity of commensal trichomonad protists that naturally colonize the enteric cavity of laboratory mice.

14.
Dev Cell ; 12(3): 349-61, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17336902

RESUMO

Polarized cells, such as neuronal, epithelial, and fungal cells, all display a specialized organization of their microtubules (MTs). The interphase MT cytoskeleton of the rod-shaped fission yeast, Schizosaccharomyces pombe, has been extensively described by fluorescence microscopy. Here, we describe a large-scale, electron tomography investigation of S. pombe, including a 3D reconstruction of a complete eukaryotic cell volume at sufficient resolution to show both how many MTs there are in a bundle and their detailed architecture. Most cytoplasmic MTs are open at one end and capped at the other, providing evidence about their polarity. Electron-dense bridges between the MTs themselves and between MTs and the nuclear envelope were frequently observed. Finally, we have investigated structure/function relationships between MTs and both mitochondria and vesicles. Our analysis shows that electron tomography of well-preserved cells is ideally suited for describing fine ultrastructural details that were not visible with previous techniques.


Assuntos
Polaridade Celular/fisiologia , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestrutura , Tomografia Computadorizada por Raios X/métodos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Interfase/fisiologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Modelos Moleculares , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Polímeros/metabolismo , Tubulina (Proteína)/metabolismo
15.
J Cell Sci ; 123(Pt 14): 2481-90, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20592185

RESUMO

Spore formation in Saccharomyces cerevisiae is driven by de novo assembly of new membranes termed prospore membranes. A vesicle-docking complex called the meiosis II outer plaque (MOP) forms on the cytoplasmic faces of the spindle-pole bodies at the onset of meiosis II and serves as the initiation site for membrane formation. In this study, a fluorescence-recovery assay was used to demonstrate that the dynamics of the MOP proteins change coincident with the coalescence of precursor vesicles into a membrane. Proteins within the MOP exchange freely with a soluble pool prior to membrane assembly, but after membranes are formed they remain stably within the MOP. By contrast, constitutive spindle-pole-body proteins display low exchange in both conditions. The MOP component Ady4p plays a role in maintaining the integrity of the MOP complex, but this role differs depending on whether the MOP is associated with docked vesicles or a fully formed membrane. These results suggest an architectural rearrangement of the MOP coincident with vesicle fusion.


Assuntos
Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Esporos Fúngicos/metabolismo , Membrana Celular/ultraestrutura , Clonagem Molecular , Proteínas do Citoesqueleto/genética , Recuperação de Fluorescência Após Fotodegradação , Meiose , Fusão de Membrana/genética , Proteínas de Membrana/genética , Centro Organizador dos Microtúbulos/ultraestrutura , Complexos Multiproteicos/metabolismo , Organismos Geneticamente Modificados , Estabilidade Proteica , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência/genética , Esporos Fúngicos/ultraestrutura , Transgenes/genética
16.
Nat Commun ; 13(1): 4005, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831291

RESUMO

Little is known about the structural basis of prion strains. Here we provide a high (3.0 Å) resolution cryo-electron microscopy-based structure of infectious brain-derived fibrils of the mouse anchorless RML scrapie strain which, like the recently determined hamster 263K strain, has a parallel in-register ß-sheet-based core. Several structural motifs are shared between these ex vivo prion strains, including an amino-proximal steric zipper and three ß-arches. However, detailed comparisons reveal variations in these shared structural topologies and other features. Unlike 263K and wildtype RML prions, the anchorless RML prions lack glycophosphatidylinositol anchors and are severely deficient in N-linked glycans. Nonetheless, the similarity of our anchorless RML structure to one reported for wildtype RML prion fibrils in an accompanying paper indicates that these post-translational modifications do not substantially alter the amyloid core conformation. This work demonstrates both common and divergent structural features of prion strains at the near-atomic level.


Assuntos
Príons , Scrapie , Amiloide , Animais , Encéfalo/metabolismo , Microscopia Crioeletrônica , Camundongos , Príons/metabolismo , Ovinos
17.
Acta Neuropathol Commun ; 9(1): 17, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33509294

RESUMO

Accumulation of misfolded host proteins is central to neuropathogenesis of numerous human brain diseases including prion and prion-like diseases. Neurons of retina are also affected by these diseases. Previously, our group and others found that prion-induced retinal damage to photoreceptor cells in mice and humans resembled pathology of human retinitis pigmentosa caused by mutations in retinal proteins. Here, using confocal, epifluorescent and electron microscopy we followed deposition of disease-associated prion protein (PrPSc) and its association with damage to critical retinal structures following intracerebral prion inoculation. The earliest time and place of retinal PrPSc deposition was 67 days post-inoculation (dpi) on the inner segment (IS) of cone photoreceptors. At 104 and 118 dpi, PrPSc was associated with the base of cilia and swollen cone inner segments, suggesting ciliopathy as a pathogenic mechanism. By 118 dpi, PrPSc was deposited in both rods and cones which showed rootlet damage in the IS, and photoreceptor cell death was indicated by thinning of the outer nuclear layer. In the outer plexiform layer (OPL) in uninfected mice, normal host PrP (PrPC) was mainly associated with cone bipolar cell processes, but in infected mice, at 118 dpi, PrPSc was detected on cone and rod bipolar cell dendrites extending into ribbon synapses. Loss of ribbon synapses in cone pedicles and rod spherules in the OPL was observed to precede destruction of most rods and cones over the next 2-3 weeks. However, bipolar cells and horizontal cells were less damaged, indicating high selectivity among neurons for injury by prions. PrPSc deposition in cone and rod inner segments and on the bipolar cell processes participating in ribbon synapses appear to be critical early events leading to damage and death of photoreceptors after prion infection. These mechanisms may also occur in human retinitis pigmentosa and prion-like diseases, such as AD.


Assuntos
Cílio Conector dos Fotorreceptores/metabolismo , Proteínas PrPSc/metabolismo , Células Bipolares da Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Segmento Interno das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Animais , Morte Celular , Progressão da Doença , Camundongos , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência , Cílio Conector dos Fotorreceptores/patologia , Cílio Conector dos Fotorreceptores/ultraestrutura , Proteínas PrPSc/administração & dosagem , Células Bipolares da Retina/patologia , Células Bipolares da Retina/ultraestrutura , Células Fotorreceptoras Retinianas Cones/patologia , Células Fotorreceptoras Retinianas Cones/ultraestrutura , Segmento Interno das Células Fotorreceptoras da Retina/patologia , Segmento Interno das Células Fotorreceptoras da Retina/ultraestrutura , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Segmento Externo das Células Fotorreceptoras da Retina/ultraestrutura , Células Fotorreceptoras Retinianas Bastonetes/patologia , Células Fotorreceptoras Retinianas Bastonetes/ultraestrutura , Scrapie/metabolismo , Scrapie/patologia
18.
Cell Rep ; 37(4): 109888, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34706234

RESUMO

Dysregulated inflammation dominated by chemokine expression is a key feature of disease following infection with the globally important human pathogens Zika virus (ZIKV) and dengue virus, but a mechanistic understanding of how pro-inflammatory responses are initiated is lacking. Mitophagy is a quality-control mechanism that regulates innate immune signaling and cytokine production through selective degradation of damaged mitochondria. Here, we demonstrate that ZIKV nonstructural protein 5 (NS5) antagonizes mitophagy by binding to the host protein Ajuba and preventing its translocation to depolarized mitochondria where it is required for PINK1 activation and downstream signaling. Consequent mitophagy suppression amplifies the production of pro-inflammatory chemokines through protein kinase R (PKR) sensing of mitochondrial RNA. In Ajuba-/- mice, ZIKV induces early expression of pro-inflammatory chemokines associated with significantly enhanced dissemination to tissues. This work identifies Ajuba as a critical regulator of mitophagy and demonstrates a role for mitophagy in limiting systemic inflammation following infection by globally important human viruses.


Assuntos
Proteínas com Domínio LIM/metabolismo , Mitofagia , Proteínas Quinases/metabolismo , Transdução de Sinais , Infecção por Zika virus/metabolismo , Zika virus/metabolismo , eIF-2 Quinase/metabolismo , Células A549 , Animais , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Proteínas com Domínio LIM/genética , Camundongos , Camundongos Knockout , Proteínas Quinases/genética , Células Vero , Zika virus/genética , Infecção por Zika virus/genética , eIF-2 Quinase/genética
19.
PLoS Biol ; 5(7): e170, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17579515

RESUMO

Many organisms divide chromosomes within the confines of the nuclear envelope (NE) in a process known as closed mitosis. Thus, they must ensure coordination between segregation of the genetic material and division of the NE itself. Although many years of work have led to a reasonably clear understanding of mitotic spindle function in chromosome segregation, the NE division mechanism remains obscure. Here, we show that fission yeast cells overexpressing the transforming acid coiled coil (TACC)-related protein, Mia1p/Alp7p, failed to separate the spindle pole bodies (SPBs) at the onset of mitosis, but could assemble acentrosomal bipolar and antiparallel spindle structures. Most of these cells arrested in anaphase with fully extended spindles and nonsegregated chromosomes. Spindle poles that lacked the SPBs did not lead the division of the NE during spindle elongation, but deformed it, trapping the chromosomes within. When the SPBs were severed by laser microsurgery in wild-type cells, we observed analogous deformations of the NE by elongating spindle remnants, resulting in NE division failure. Analysis of dis1Delta cells that elongate spindles despite unattached kinetochores indicated that the SPBs were required for maintaining nuclear shape at anaphase onset. Strikingly, when the NE was disassembled by utilizing a temperature-sensitive allele of the Ran GEF, Pim1p, the abnormal spindles induced by Mia1p overexpression were capable of segregating sister chromatids to daughter cells, suggesting that the failure to divide the NE prevents chromosome partitioning. Our results imply that the SPBs preclude deformation of the NE during spindle elongation and thus serve as specialized structures enabling nuclear division during closed mitosis in fission yeast.


Assuntos
Divisão do Núcleo Celular/fisiologia , Mitose/fisiologia , Membrana Nuclear/fisiologia , Schizosaccharomyces/citologia , Schizosaccharomyces/fisiologia , Fuso Acromático/fisiologia , Divisão do Núcleo Celular/genética , Cromossomos Fúngicos/genética , Genes Fúngicos , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Mitose/genética , Mutação , Membrana Nuclear/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Fuso Acromático/genética , Fuso Acromático/ultraestrutura
20.
J Struct Biol ; 168(3): 378-87, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19732834

RESUMO

The resolution of cryo-electron tomography can be limited by the first zero of the microscope's contrast transfer function (CTF). To achieve higher resolution, it is critical to determine the CTF and correct its phase inversions. However, the extremely low signal-to-noise ratio (SNR) and the defocus gradient in the projections of tilted specimens make this process challenging. Two programs, CTFPLOTTER and CTFPHASEFLIP, have been developed to address these issues. CTFPLOTTER obtains a 1D power spectrum by periodogram averaging and rotational averaging and it estimates the noise background with a novel approach, which uses images taken with no specimen. The background-subtracted 1D power spectra from image regions at different defocus values are then shifted to align their first zeros and averaged together. This averaging improves the SNR sufficiently that it becomes possible to determine the defocus for subsets of the tilt series rather than just the entire series. CTFPHASEFLIP corrects images line-by-line by inverting phases appropriately in thin strips of the image at nearly constant defocus. CTF correction by these methods is shown to improve the resolution of aligned, averaged particles extracted from tomograms. However, some restoration of Fourier amplitudes at high frequencies is important for seeing the benefits from CTF correction.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Software , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA