Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Med Internet Res ; 21(4): e13822, 2019 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-31017583

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is currently diagnosed using qualitative methods that measure between 20-100 behaviors, can span multiple appointments with trained clinicians, and take several hours to complete. In our previous work, we demonstrated the efficacy of machine learning classifiers to accelerate the process by collecting home videos of US-based children, identifying a reduced subset of behavioral features that are scored by untrained raters using a machine learning classifier to determine children's "risk scores" for autism. We achieved an accuracy of 92% (95% CI 88%-97%) on US videos using a classifier built on five features. OBJECTIVE: Using videos of Bangladeshi children collected from Dhaka Shishu Children's Hospital, we aim to scale our pipeline to another culture and other developmental delays, including speech and language conditions. METHODS: Although our previously published and validated pipeline and set of classifiers perform reasonably well on Bangladeshi videos (75% accuracy, 95% CI 71%-78%), this work improves on that accuracy through the development and application of a powerful new technique for adaptive aggregation of crowdsourced labels. We enhance both the utility and performance of our model by building two classification layers: The first layer distinguishes between typical and atypical behavior, and the second layer distinguishes between ASD and non-ASD. In each of the layers, we use a unique rater weighting scheme to aggregate classification scores from different raters based on their expertise. We also determine Shapley values for the most important features in the classifier to understand how the classifiers' process aligns with clinical intuition. RESULTS: Using these techniques, we achieved an accuracy (area under the curve [AUC]) of 76% (SD 3%) and sensitivity of 76% (SD 4%) for identifying atypical children from among developmentally delayed children, and an accuracy (AUC) of 85% (SD 5%) and sensitivity of 76% (SD 6%) for identifying children with ASD from those predicted to have other developmental delays. CONCLUSIONS: These results show promise for using a mobile video-based and machine learning-directed approach for early and remote detection of autism in Bangladeshi children. This strategy could provide important resources for developmental health in developing countries with few clinical resources for diagnosis, helping children get access to care at an early age. Future research aimed at extending the application of this approach to identify a range of other conditions and determine the population-level burden of developmental disabilities and impairments will be of high value.


Assuntos
Transtorno do Espectro Autista/diagnóstico , Deficiências do Desenvolvimento/diagnóstico , Aprendizado de Máquina/normas , Gravação em Vídeo/métodos , Bangladesh , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Estudos de Validação como Assunto
2.
PLoS Med ; 15(11): e1002705, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30481180

RESUMO

BACKGROUND: The standard approaches to diagnosing autism spectrum disorder (ASD) evaluate between 20 and 100 behaviors and take several hours to complete. This has in part contributed to long wait times for a diagnosis and subsequent delays in access to therapy. We hypothesize that the use of machine learning analysis on home video can speed the diagnosis without compromising accuracy. We have analyzed item-level records from 2 standard diagnostic instruments to construct machine learning classifiers optimized for sparsity, interpretability, and accuracy. In the present study, we prospectively test whether the features from these optimized models can be extracted by blinded nonexpert raters from 3-minute home videos of children with and without ASD to arrive at a rapid and accurate machine learning autism classification. METHODS AND FINDINGS: We created a mobile web portal for video raters to assess 30 behavioral features (e.g., eye contact, social smile) that are used by 8 independent machine learning models for identifying ASD, each with >94% accuracy in cross-validation testing and subsequent independent validation from previous work. We then collected 116 short home videos of children with autism (mean age = 4 years 10 months, SD = 2 years 3 months) and 46 videos of typically developing children (mean age = 2 years 11 months, SD = 1 year 2 months). Three raters blind to the diagnosis independently measured each of the 30 features from the 8 models, with a median time to completion of 4 minutes. Although several models (consisting of alternating decision trees, support vector machine [SVM], logistic regression (LR), radial kernel, and linear SVM) performed well, a sparse 5-feature LR classifier (LR5) yielded the highest accuracy (area under the curve [AUC]: 92% [95% CI 88%-97%]) across all ages tested. We used a prospectively collected independent validation set of 66 videos (33 ASD and 33 non-ASD) and 3 independent rater measurements to validate the outcome, achieving lower but comparable accuracy (AUC: 89% [95% CI 81%-95%]). Finally, we applied LR to the 162-video-feature matrix to construct an 8-feature model, which achieved 0.93 AUC (95% CI 0.90-0.97) on the held-out test set and 0.86 on the validation set of 66 videos. Validation on children with an existing diagnosis limited the ability to generalize the performance to undiagnosed populations. CONCLUSIONS: These results support the hypothesis that feature tagging of home videos for machine learning classification of autism can yield accurate outcomes in short time frames, using mobile devices. Further work will be needed to confirm that this approach can accelerate autism diagnosis at scale.


Assuntos
Transtorno Autístico/diagnóstico , Diagnóstico por Computador/métodos , Aprendizado de Máquina , Consulta Remota/métodos , Gravação em Vídeo/métodos , Adolescente , Comportamento do Adolescente , Fatores Etários , Transtorno Autístico/fisiopatologia , Transtorno Autístico/psicologia , Criança , Comportamento Infantil , Pré-Escolar , Diagnóstico Precoce , Estudos de Viabilidade , Feminino , Humanos , Lactente , Masculino , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA