Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(4): 999-1010.e15, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38325366

RESUMO

Protein structures are essential to understanding cellular processes in molecular detail. While advances in artificial intelligence revealed the tertiary structure of proteins at scale, their quaternary structure remains mostly unknown. We devise a scalable strategy based on AlphaFold2 to predict homo-oligomeric assemblies across four proteomes spanning the tree of life. Our results suggest that approximately 45% of an archaeal proteome and a bacterial proteome and 20% of two eukaryotic proteomes form homomers. Our predictions accurately capture protein homo-oligomerization, recapitulate megadalton complexes, and unveil hundreds of homo-oligomer types, including three confirmed experimentally by structure determination. Integrating these datasets with omics information suggests that a majority of known protein complexes are symmetric. Finally, these datasets provide a structural context for interpreting disease mutations and reveal coiled-coil regions as major enablers of quaternary structure evolution in human. Our strategy is applicable to any organism and provides a comprehensive view of homo-oligomerization in proteomes.


Assuntos
Inteligência Artificial , Proteínas , Proteoma , Humanos , Proteínas/química , Proteínas/genética , Archaea/química , Archaea/genética , Eucariotos/química , Eucariotos/genética , Bactérias/química , Bactérias/genética
2.
Proteomics ; 23(17): e2200323, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37365936

RESUMO

Reliably scoring and ranking candidate models of protein complexes and assigning their oligomeric state from the structure of the crystal lattice represent outstanding challenges. A community-wide effort was launched to tackle these challenges. The latest resources on protein complexes and interfaces were exploited to derive a benchmark dataset consisting of 1677 homodimer protein crystal structures, including a balanced mix of physiological and non-physiological complexes. The non-physiological complexes in the benchmark were selected to bury a similar or larger interface area than their physiological counterparts, making it more difficult for scoring functions to differentiate between them. Next, 252 functions for scoring protein-protein interfaces previously developed by 13 groups were collected and evaluated for their ability to discriminate between physiological and non-physiological complexes. A simple consensus score generated using the best performing score of each of the 13 groups, and a cross-validated Random Forest (RF) classifier were created. Both approaches showed excellent performance, with an area under the Receiver Operating Characteristic (ROC) curve of 0.93 and 0.94, respectively, outperforming individual scores developed by different groups. Additionally, AlphaFold2 engines recalled the physiological dimers with significantly higher accuracy than the non-physiological set, lending support to the reliability of our benchmark dataset annotations. Optimizing the combined power of interface scoring functions and evaluating it on challenging benchmark datasets appears to be a promising strategy.


Assuntos
Proteínas , Reprodutibilidade dos Testes , Proteínas/metabolismo , Ligação Proteica
3.
J Chem Inf Model ; 62(7): 1595-1601, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35349266

RESUMO

Molecular cartography using two-dimensional (2D) representation of protein surfaces has been shown to be very promising for protein surface analysis. Here, we present SURFMAP, a free standalone and easy-to-use software that enables the fast and automated 2D projection of either predefined features of protein surface (i.e., electrostatic potential, hydrophobicity, stickiness, and surface relief) or any descriptor encoded in the temperature factor column of a PDB file. SURFMAP proposes three different "equal-area" projections that have the advantage of preserving the area measures. It provides the user with (i) 2D maps that enable the easy and visual analysis of protein surface features of interest and (ii) maps in a text file format allowing the fast and straightforward quantitative comparison of 2D maps of homologous proteins.


Assuntos
Software , Eletricidade Estática
4.
PLoS Comput Biol ; 14(3): e1005992, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29543809

RESUMO

We present a new educational initiative called Meet-U that aims to train students for collaborative work in computational biology and to bridge the gap between education and research. Meet-U mimics the setup of collaborative research projects and takes advantage of the most popular tools for collaborative work and of cloud computing. Students are grouped in teams of 4-5 people and have to realize a project from A to Z that answers a challenging question in biology. Meet-U promotes "coopetition," as the students collaborate within and across the teams and are also in competition with each other to develop the best final product. Meet-U fosters interactions between different actors of education and research through the organization of a meeting day, open to everyone, where the students present their work to a jury of researchers and jury members give research seminars. This very unique combination of education and research is strongly motivating for the students and provides a formidable opportunity for a scientific community to unite and increase its visibility. We report on our experience with Meet-U in two French universities with master's students in bioinformatics and modeling, with protein-protein docking as the subject of the course. Meet-U is easy to implement and can be straightforwardly transferred to other fields and/or universities. All the information and data are available at www.meet-u.org.


Assuntos
Biologia Computacional/educação , Biologia Computacional/métodos , Pesquisa/educação , Humanos , Projetos de Pesquisa , Estudantes , Universidades
5.
Protein Sci ; 32(11): e4789, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37768271

RESUMO

α-Helical coiled coils are common tertiary and quaternary elements of protein structure. In coiled coils, two or more α helices wrap around each other to form bundles. This apparently simple structural motif can generate many architectures and topologies. Coiled coil-forming sequences can be predicted from heptad repeats of hydrophobic and polar residues, hpphppp, although this is not always reliable. Alternatively, coiled-coil structures can be identified using the program SOCKET, which finds knobs-into-holes (KIH) packing between side chains of neighboring helices. SOCKET also classifies coiled-coil architecture and topology, thus allowing sequence-to-structure relationships to be garnered. In 2009, we used SOCKET to create a relational database of coiled-coil structures, CC+ , from the RCSB Protein Data Bank (PDB). Here, we report an update of CC+ following an update of SOCKET (to Socket2) and the recent explosion of structural data and the success of AlphaFold2 in predicting protein structures from genome sequences. With the most-stringent SOCKET parameters, CC+ contains ≈12,000 coiled-coil assemblies from experimentally determined structures, and ≈120,000 potential coiled-coil structures within single-chain models predicted by AlphaFold2 across 48 proteomes. CC+ allows these and other less-stringently defined coiled coils to be searched at various levels of structure, sequence, and side-chain interactions. The identified coiled coils can be viewed directly from CC+ using the Socket2 application, and their associated data can be downloaded for further analyses. CC+ is available freely at http://coiledcoils.chm.bris.ac.uk/CCPlus/Home.html. It will be updated automatically. We envisage that CC+ could be used to understand coiled-coil assemblies and their sequence-to-structure relationships, and to aid protein design and engineering.


Assuntos
Proteoma , Software , Estrutura Secundária de Proteína , Domínios Proteicos , Conformação Proteica em alfa-Hélice
6.
J Mol Biol ; 432(4): 1183-1198, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31931010

RESUMO

In the crowded cell, a strong selective pressure operates on the proteome to limit the competition between functional and non-functional protein-protein interactions. We developed an original theoretical framework in order to interrogate how this competition constrains the behavior of proteins with respect to their partners or random encounters. Our theoretical framework relies on a two-dimensional (2D) representation of interaction energy landscapes, with 2D energy maps, which reflect in a synthetic way the spatial distribution of the interaction propensity of a protein surface for another protein. We realized the interaction propensity mapping of proteins' surfaces in interaction with functional and arbitrary partners and asked whether the distribution of their interaction propensity is conserved during evolution. Therefore, we performed several thousands of cross-docking simulations to systematically characterize the energy landscapes of 103 proteins interacting with different sets of homologs, corresponding to their functional partner's family or arbitrary protein families. Then, we systematically compared the energy maps resulting from the docking of each protein with the different protein families of the dataset. Strikingly, we show that the interaction propensity not only of the binding sites but also of the rest of the surface is conserved for docking partners belonging to the same protein family. Interestingly, this observation holds for docked proteins corresponding to true but also arbitrary partners. Our theoretical framework enables the characterization of the energy behavior of a protein in interaction with hundreds of proteins and opens the way for the characterization of the behavior of proteins in a specific environment.


Assuntos
Proteínas/metabolismo , Bases de Dados de Proteínas , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteínas/química , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA