Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Circ Res ; 126(4): 501-516, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31852401

RESUMO

RATIONALE: Longitudinal studies are required to distinguish within versus between-individual variation and repeatability of gene expression. They are uniquely positioned to decipher genetic signal from environmental noise, with potential application to gene variant and expression studies. However, longitudinal analyses of gene expression in healthy individuals-especially with regards to alternative splicing-are lacking for most primary cell types, including platelets. OBJECTIVE: To assess repeatability of gene expression and splicing in platelets and use repeatability to identify novel platelet expression quantitative trait loci (QTLs) and splice QTLs. METHODS AND RESULTS: We sequenced the transcriptome of platelets isolated repeatedly up to 4 years from healthy individuals. We examined within and between individual variation and repeatability of platelet RNA expression and exon skipping, a readily measured alternative splicing event. We find that platelet gene expression is generally stable between and within-individuals over time-with the exception of a subset of genes enriched for the inflammation gene ontology. We show an enrichment among repeatable genes for associations with heritable traits, including known and novel platelet expression QTLs. Several exon skipping events were also highly repeatable, suggesting heritable patterns of splicing in platelets. One of the most repeatable was exon 14 skipping of SELP. Accordingly, we identify rs6128 as a platelet splice QTL and define an rs6128-dependent association between SELP exon 14 skipping and race. In vitro experiments demonstrate that this single nucleotide variant directly affects exon 14 skipping and changes the ratio of transmembrane versus soluble P-selectin protein production. CONCLUSIONS: We conclude that the platelet transcriptome is generally stable over 4 years. We demonstrate the use of repeatability of gene expression and splicing to identify novel platelet expression QTLs and splice QTLs. rs6128 is a platelet splice QTL that alters SELP exon 14 skipping and soluble versus transmembrane P-selectin protein production.


Assuntos
Processamento Alternativo , Plaquetas/metabolismo , Selectina-P/genética , Locos de Características Quantitativas/genética , RNA-Seq/métodos , Transcriptoma/genética , Éxons/genética , Ontologia Genética , Humanos , Polimorfismo de Nucleotídeo Único
2.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499021

RESUMO

Platelets (PLTs) are anucleate and considered incapable of nuclear functions. Contrastingly, nuclear proteins were detected in human PLTs. For most of these proteins, it is unclear if nuclear or alternatively assigned functions are performed, a question we wanted to address for nuclear assembly protein 1like 1 (NAP1L1). Using a wide array of molecular methods, including RNAseq, co-IP, overexpression and functional assays, we explored expression pattern and functionality of NAP1L1 in PLTs, and CD34+-derived megakaryocytes (MKs). NAP1L1 is expressed in PLTs and MKs. Co-IP experiments revealed that dihydrolipolylysine-residue acetyltransferase (DLAT encoded protein PDC-E2, ODP2) dynamically interacts with NAP1L1. PDC-E2 is part of the mitochondrial pyruvate-dehydrogenase (PDH) multi-enzyme complex, playing a crucial role in maintaining cellular respiration, and promoting ATP-synthesis via the respiratory chain. Since altered mitochondrial function is a hallmark of infectious syndromes, we analyzed PDH activity in PLTs from septic patients demonstrating increased activity, paralleling NAP1L1 expression levels. MKs PDH activity decreased following an LPS-challenge. Furthermore, overexpression of NAP1L1 significantly altered the ability of MKs to form proplatelet extensions, diminishing thrombopoiesis. These results indicate that NAP1L1 performs in other than nucleosome-assembly functions in PTLs and MKs, binding a key mitochondrial protein as a potential chaperone, and gatekeeper, influencing PDH activity and thrombopoiesis.


Assuntos
Megacariócitos , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Megacariócitos/metabolismo , Plaquetas/metabolismo , Trombopoese , Antígenos CD34/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo
3.
Blood ; 134(12): 911-923, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31366617

RESUMO

There is increasing recognition that platelets have a functional role in the pathophysiology of sepsis, though this role has not been precisely defined. Whether sepsis alters the human platelet transcriptome and translational landscape has never been established. We used parallel techniques of RNA sequencing and ribosome footprint profiling to interrogate the platelet transcriptome and translatome in septic patients and healthy donors. We identified 1806 significantly differentially expressed (false discovery rate <0.05) transcripts in platelets from septic patients. Platelet translational events during sepsis were also upregulated. To explore the relevance of a murine model of sepsis, cecal ligation and puncture (CLP), we compared sepsis-induced changes in platelet gene expression between septic patients and mice subjected to CLP. Platelet transcriptional (ρ = 0.42, P = 3.2 × 10-285) and translational (ρ = 0.65, P = 1.09 × 10-56) changes were significantly correlated between septic patients and mice. We focused on ITGA2B, tracking and validating the expression, regulation, and functional impact of changes in ITGA2B during sepsis. Increased ITGA2B was identified in bone marrow megakaryocytes within 24 hours of sepsis onset. Subsequent increases in ITGA2B were seen in circulating platelets, suggesting dynamic trafficking of the messenger RNA. Transcriptional changes in ITGA2B were accompanied by de novo protein synthesis of αIIb and integrin αIIbß3 activation. Increased αIIb was associated with mortality in humans and mice. These findings provide previously unrecognized evidence that human and murine sepsis similarly alters the platelet transcriptional and translational landscape. Moreover, ITGA2B is upregulated and functional in sepsis due to trafficking from megakaryocytes and de novo synthesis in platelets and is associated with increased mortality.


Assuntos
Plaquetas/metabolismo , Sepse/genética , Sepse/metabolismo , Animais , Plaquetas/patologia , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Biossíntese de Proteínas , Proteoma/análise , Proteômica , Sepse/sangue , Sepse/patologia , Índice de Gravidade de Doença , Transcrição Gênica , Transcriptoma
4.
Blood ; 133(19): 2013-2026, 2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-30723081

RESUMO

Evolving evidence indicates that platelets and megakaryocytes (MKs) have unexpected activities in inflammation and infection; whether viral infections upregulate biologically active, antiviral immune genes in platelets and MKs is unknown, however. We examined antiviral immune genes in these cells in dengue and influenza infections, viruses that are global public health threats. Using complementary biochemical, pharmacological, and genetic approaches, we examined the regulation and function of interferon-induced transmembrane protein 3 (IFITM3), an antiviral immune effector gene not previously studied in human platelets and MKs. IFITM3 was markedly upregulated in platelets isolated from patients during clinical influenza and dengue virus (DENV) infections. Lower IFITM3 expression in platelets correlated with increased illness severity and mortality in patients. Administering a live, attenuated DENV vaccine to healthy subjects significantly increased platelet IFITM3 expression. Infecting human MKs with DENV selectively increased type I interferons and IFITM3. Overexpression of IFITM3 in MKs was sufficient to prevent DENV infection. In naturally occurring, genetic loss-of-function studies, MKs from healthy subjects harboring a homozygous mutation in IFITM3 (rs12252-C, a common single-nucleotide polymorphism in areas of the world where DENV is endemic) were significantly more susceptible to DENV infection. DENV-induced MK secretion of interferons prevented infection of bystander MKs and hematopoietic stem cells. Thus, viral infections upregulate IFITM3 in human platelets and MKs, and IFITM3 expression is associated with adverse clinical outcomes. These observations establish, for the first time, that human MKs possess antiviral functions, preventing DENV infection of MKs and hematopoietic stem cells after local immune signaling.


Assuntos
Imunidade Inata/imunologia , Megacariócitos/imunologia , Proteínas de Membrana/imunologia , Proteínas de Ligação a RNA/imunologia , Antivirais/imunologia , Dengue/imunologia , Vacinas contra Dengue/imunologia , Humanos
5.
J Immunol ; 200(1): 295-304, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29167233

RESUMO

Dysregulated inflammation is implicated in the pathobiology of aging, yet platelet-leukocyte interactions and downstream cytokine synthesis in aging remains poorly understood. Platelets and monocytes were isolated from healthy younger (age <45, n = 37) and older (age ≥65, n = 30) adults and incubated together under autologous and nonautologous conditions. Synthesis of inflammatory cytokines by monocytes, alone or in the presence of platelets, was examined. Next-generation RNA-sequencing allowed for unbiased profiling of the platelet transcriptome in aging. Basal IL-8 and MCP-1 synthesis by monocytes alone did not differ between older and younger adults. However, in the presence of autologous platelets, monocytes from older adults synthesized greater IL-8 (41 ± 5 versus 9 ± 2 ng/ml, p < 0.0001) and MCP-1 (867 ± 150 versus 216 ± 36 ng/ml, p < 0.0001) than younger adults. Platelets from older adults were sufficient for upregulating the synthesis of inflammatory cytokines by monocytes. Using RNA-sequencing of platelets followed by validation via RT-PCR and immunoblot, we discovered that granzyme A (GrmA), a serine protease not previously identified in human platelets, increases with aging (∼9-fold versus younger adults, p < 0.05) and governs increased IL-8 and MCP-1 synthesis through TLR4 and caspase-1. Inhibiting GrmA reduced excessive IL-8 and MCP-1 synthesis in aging to levels similar to younger adults. In summary, human aging is associated with changes in the platelet transcriptome and proteome. GrmA is present and bioactive in human platelets, is higher in older adults, and controls the synthesis of inflammatory cytokines by monocytes. Alterations in the platelet molecular signature and signaling to monocytes may contribute to dysregulated inflammatory syndromes in older adults.


Assuntos
Envelhecimento/imunologia , Plaquetas/fisiologia , Quimiocina CCL2/metabolismo , Granzimas/metabolismo , Inflamação/imunologia , Interleucina-8/metabolismo , Monócitos/imunologia , Idoso , Células Cultivadas , Quimiocina CCL2/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica , Granzimas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mediadores da Inflamação/metabolismo , Interleucina-8/genética , Masculino , Pessoa de Meia-Idade , Receptor 4 Toll-Like/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 38(4): 801-815, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29301786

RESUMO

OBJECTIVE: One source of endogenous reverse transcriptase (eRT) activity in nucleated cells is the LINE-1/L1 (long interspersed nuclear element-1), a non-LTR retrotransposon that is implicated in the regulation of gene expression. Nevertheless, the presence and function of eRT activity and LINE-1 in human platelets, an anucleate cell, has not previously been determined. APPROACH AND RESULTS: We demonstrate that human and murine platelets possess robust eRT activity and identify the source as being LINE-1 ribonucleoprotein particles. Inhibition of eRT in vitro in isolated platelets from healthy individuals or in people with HIV treated with RT inhibitors enhanced global protein synthesis and platelet activation. If HIV patients were treated with reverse transcriptase inhibitor, we found that platelets from these patients had increased basal activation. We next discovered that eRT activity in platelets controlled the generation of RNA-DNA hybrids, which serve as translational repressors. Inhibition of platelet eRT lifted this RNA-DNA hybrid-induced translational block and was sufficient to increase protein expression of target RNAs identified by RNA-DNA hybrid immunoprecipitation. CONCLUSIONS: Thus, we provide the first evidence that platelets possess L1-encoded eRT activity. We also demonstrate that platelet eRT activity regulates platelet hyperreactivity and thrombosis and controls RNA-DNA hybrid formation and identify that RNA-DNA hybrids function as a novel translational control mechanism in human platelets.


Assuntos
Plaquetas/enzimologia , DNA/sangue , Elementos Nucleotídeos Longos e Dispersos , Ativação Plaquetária , Biossíntese de Proteínas , DNA Polimerase Dirigida por RNA/sangue , RNA/sangue , Trombose/sangue , Animais , Plaquetas/efeitos dos fármacos , Linhagem Celular , DNA/genética , Modelos Animais de Doenças , Feminino , Infecções por HIV/sangue , Infecções por HIV/tratamento farmacológico , Infecções por HIV/enzimologia , Infecções por HIV/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Ativação Plaquetária/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Embolia Pulmonar/sangue , Embolia Pulmonar/enzimologia , Embolia Pulmonar/genética , RNA/genética , DNA Polimerase Dirigida por RNA/genética , Inibidores da Transcriptase Reversa/uso terapêutico , Trombose/enzimologia , Trombose/genética
7.
Am J Respir Cell Mol Biol ; 59(1): 18-35, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29553813

RESUMO

Platelets are essential cellular effectors of hemostasis and contribute to disease as circulating effectors of pathologic thrombosis. These are their most widely known biologic activities. Nevertheless, recent observations demonstrate that platelets have a much more intricate repertoire beyond these traditional functions and that they are specialized for contributions to vascular barrier integrity, organ repair, antimicrobial host defense, inflammation, and activities across the immune continuum. Paradoxically, on the basis of clinical investigations and animal models of disease, some of these newly discovered activities of platelets appear to contribute to tissue injury. Studies in the last decade indicate unique interactions of platelets and their precursor, the megakaryocyte, in the lung and implicate platelets as essential effectors in experimental acute lung injury and clinical acute respiratory distress syndrome. Additional discoveries derived from evolving work will be required to precisely define the contributions of platelets to complex subphenotypes of acute lung injury and to determine if these remarkable and versatile blood cells are therapeutic targets in acute respiratory distress syndrome.


Assuntos
Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/patologia , Plaquetas/patologia , Síndrome do Desconforto Respiratório/sangue , Síndrome do Desconforto Respiratório/patologia , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Humanos , Megacariócitos/patologia , Fenótipo , Inibidores da Agregação Plaquetária/uso terapêutico , Síndrome do Desconforto Respiratório/tratamento farmacológico
8.
J Biol Chem ; 292(14): 5770-5783, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28209711

RESUMO

Streptococcus pneumoniae serotype 3 strains emerge frequently within clinical isolates of invasive diseases. Bacterial invasion into deeper tissues is associated with colonization and immune evasion mechanisms. Thus, pneumococci express a versatile repertoire of surface proteins sequestering and interacting specifically with components of the human extracellular matrix and serum. Hic, a PspC-like pneumococcal surface protein, possesses vitronectin and factor H binding activity. Here, we show that heterologously expressed Hic domains interact, similar to the classical PspC molecule, with human matricellular thrombospondin-1 (hTSP-1). Binding studies with isolated human thrombospondin-1 and various Hic domains suggest that the interaction between hTSP-1 and Hic differs from binding to vitronectin and factor H. Binding of Hic to hTSP-1 is inhibited by heparin and chondroitin sulfate A, indicating binding to the N-terminal globular domain or type I repeats of hTSP-1. Competitive inhibition experiments with other pneumococcal hTSP-1 adhesins demonstrated that PspC and PspC-like Hic recognize similar domains, whereas PavB and Hic can bind simultaneously to hTSP-1. In conclusion, Hic binds specifically hTSP-1; however, truncation in the N-terminal part of Hic decreases the binding activity, suggesting that the full length of the α-helical regions of Hic is required for an optimal interaction.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Plaquetas/metabolismo , Proteínas de Transporte/metabolismo , Streptococcus pneumoniae/metabolismo , Trombospondina 1/metabolismo , Humanos , Ligação Proteica
9.
J Biol Chem ; 290(23): 14542-55, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-25897078

RESUMO

The human matricellular glycoprotein thrombospondin-1 (hTSP-1) is released by activated platelets and mediates adhesion of Gram-positive bacteria to various host cells. In staphylococci, the adhesins extracellular adherence protein (Eap) and autolysin (Atl), both surface-exposed proteins containing repeating structures, were shown to be involved in the acquisition of hTSP-1 to the bacterial surface. The interaction partner(s) on the pneumococcal surface was hitherto unknown. Here, we demonstrate for the first time that pneumococcal adherence and virulence factor B (PavB) and pneumococcal surface protein C (PspC) are key players for the interaction of Streptococcus pneumoniae with matricellular hTSP-1. PavB and PspC are pneumococcal surface-exposed adhesins and virulence factors exhibiting repetitive sequences in their core structure. Heterologously expressed fragments of PavB and PspC containing repetitive structures exhibit hTSP-1 binding activity as shown by ELISA and surface plasmon resonance studies. Binding of hTSP-1 is charge-dependent and inhibited by heparin. Importantly, the deficiency in PavB and PspC reduces the recruitment of soluble hTSP-1 by pneumococci and decreases hTSP-1-mediated pneumococcal adherence to human epithelial cells. Platelet activation assays suggested that PavB and PspC are not involved in the activation of purified human platelets by pneumococci. In conclusion, this study indicates a pivotal role of PavB and PspC for pneumococcal recruitment of soluble hTSP-1 to the bacterial surface and binding of pneumococci to host cell-bound hTSP-1 during adhesion.


Assuntos
Adesinas Bacterianas/metabolismo , Interações Hospedeiro-Patógeno , Infecções Pneumocócicas/metabolismo , Streptococcus pneumoniae/fisiologia , Trombospondina 1/metabolismo , Adesinas Bacterianas/análise , Aderência Bacteriana , Linhagem Celular , Células Epiteliais/microbiologia , Humanos , Ligação Proteica , Fatores de Virulência/análise , Fatores de Virulência/metabolismo
10.
Transfusion ; 55(12): 2939-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26361072

RESUMO

BACKGROUND: HNA-3a antibodies induce severe transfusion-related acute lung injury (TRALI) in which neutrophils play a major role. As neutrophil passage through the pulmonary microvasculature is a critical step in the pathogenesis of TRALI, we investigated the impact of HNA-3a antibodies on two important factors that could impair granulocyte passage through lung capillaries: the elasticity of neutrophils and the expression and activation of adhesion molecules. STUDY DESIGN AND METHODS: The impact of HNA-3a antibodies on the elasticity of neutrophils was investigated using atomic force microscopy (AFM). Neutrophils were settled on poly-2-hydroxyethyl-methacrylate-coated glass slides before treatment with anti-HNA-3a plasma samples, control plasma, or control plasma containing formyl-methionyl-leucyl-phenylalanine (fMLP). Elasticity measurements were carried out in a temperature-controlled perfusion chamber using an atomic force microscopy (AFM) device. The impact of HNA-3a antibodies on the surface expression of total CD11b, activation of CD11b, and L-selectin (CD62L) shedding was investigated by flow cytometry. The functional impact of HNA-3a antibodies on neutrophil adhesion was assessed using fibrinogen-coated plates. RESULTS: HNA-3a antibodies induced stiffening of neutrophils (+24%-40%; p < 0.05) to a similar extent as fMLP. This effect was blocked by treatment of neutrophils with cytochalasin D. While total surface expression of CD11b and L-selectin on neutrophils was largely unaffected, HNA-3a antibodies induced alloantigen-specific activation of CD11b (+72%-107%; p < 0.05) and increased adhesion of neutrophils to fibrinogen. CONCLUSION: Accumulation of neutrophils in the pulmonary microvasculature during severe TRALI is likely mediated by increased rigidity and CD11b-mediated adhesion of neutrophils leading to retention of neutrophils.


Assuntos
Antígeno CD11b/fisiologia , Isoanticorpos/fisiologia , Isoantígenos/imunologia , Selectina L/fisiologia , Neutrófilos/fisiologia , Lesão Pulmonar Aguda/etiologia , Antígeno CD11b/química , Adesão Celular , Humanos , Microscopia de Força Atômica , Conformação Proteica , Reação Transfusional
11.
Blood ; 120(25): 5014-20, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23086749

RESUMO

Bacteria can enter the bloodstream in response to infectious insults. Bacteremia elicits several immune and clinical complications, including thrombocytopenia. A primary cause of thrombocytopenia is shortened survival of platelets. We demonstrate that pathogenic bacteria induce apoptotic events in platelets that include calpain-mediated degradation of Bcl-x(L), an essential regulator of platelet survival. Specifically, bloodstream bacterial isolates from patients with sepsis induce lateral condensation of actin, impair mitochondrial membrane potential, and degrade Bcl-x(L) protein in platelets. Bcl-x(L) protein degradation is enhanced when platelets are exposed to pathogenic Escherichia coli that produce the pore-forming toxin α-hemolysin, a response that is markedly attenuated when the gene is deleted from E coli. We also found that nonpathogenic E coli gain degrading activity when they are forced to express α-hemolysin. Like α-hemolysin, purified α-toxin readily degrades Bcl-x(L) protein in platelets, as do clinical Staphylococcus aureus isolates that produce α-toxin. Inhibition of calpain activity, but not the proteasome, rescues Bcl-x(L) protein degradation in platelets coincubated with pathogenic E coli including α-hemolysin producing strains. This is the first evidence that pathogenic bacteria can trigger activation of the platelet intrinsic apoptosis program and our results suggest a new mechanism by which bacterial pathogens might cause thrombocytopenia in patients with bloodstream infections.


Assuntos
Plaquetas/microbiologia , Escherichia coli/fisiologia , Interações Hospedeiro-Patógeno , Staphylococcus aureus/fisiologia , Proteína bcl-X/metabolismo , Apoptose , Plaquetas/citologia , Plaquetas/metabolismo , Calpaína/metabolismo , Infecções por Escherichia coli/microbiologia , Humanos , Proteólise , Infecções Estafilocócicas/microbiologia
12.
Nat Commun ; 15(1): 4774, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862473

RESUMO

Mounting ambitions and capabilities for public and private, non-government sector crewed space exploration bring with them an increasingly diverse set of space travelers, raising new and nontrivial ethical, legal, and medical policy and practice concerns which are still relatively underexplored. In this piece, we lay out several pressing issues related to ethical considerations for selecting space travelers and conducting human subject research on them, especially in the context of non-governmental and commercial/private space operations.


Assuntos
Voo Espacial , Humanos , Voo Espacial/ética , Astronautas
13.
J Cell Biochem ; 114(7): 1519-28, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23297064

RESUMO

Stimulated endothelial cells (EC) assume an activated phenotype with pro-inflammatory and prothrombotic features, requiring new gene and protein expression. New protein synthesis in activated EC is largely regulated by transcriptional events controlled by a variety of transcription factors. However, post-transcriptional control of gene expression also influences phenotype and allows the cell to alter protein expression in a faster and more direct way than is typically possible with transcriptional mechanisms. We sought to demonstrate that post-transcriptional control of gene expression occurs during EC activation. Using thrombin-activated EC and a high-throughput, microarray-based approach, we identified a number of gene products that may be regulated through post-transcriptional mechanisms, including the AP-1 transcription factor JunB. Using polysome profiling, cytoplasts and other standard cell biologic techniques, JunB is shown to be regulated at a post-transcriptional level during EC activation. In activated EC, the AP-1 transcription factor JunB, is regulated on a post-transcriptional level. Signal-dependent control of translation may regulate transcription factor expression and therefore, subsequent transcriptional events in stimulated EC.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Processamento de Proteína Pós-Traducional/genética , Processamento de Proteína Pós-Traducional/fisiologia , Fator de Transcrição AP-1/genética , Fatores de Transcrição/genética
14.
PLoS Pathog ; 7(11): e1002355, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22102811

RESUMO

Human ß-defensins (hBD) are antimicrobial peptides that curb microbial activity. Although hBD's are primarily expressed by epithelial cells, we show that human platelets express hBD-1 that has both predicted and novel antibacterial activities. We observed that activated platelets surround Staphylococcus aureus (S. aureus), forcing the pathogens into clusters that have a reduced growth rate compared to S. aureus alone. Given the microbicidal activity of ß-defensins, we determined whether hBD family members were present in platelets and found mRNA and protein for hBD-1. We also established that hBD-1 protein resided in extragranular cytoplasmic compartments of platelets. Consistent with this localization pattern, agonists that elicit granular secretion by platelets did not readily induce hBD-1 release. Nevertheless, platelets released hBD-1 when they were stimulated by α-toxin, a S. aureus product that permeabilizes target cells. Platelet-derived hBD-1 significantly impaired the growth of clinical strains of S. aureus. hBD-1 also induced robust neutrophil extracellular trap (NET) formation by target polymorphonuclear leukocytes (PMNs), which is a novel antimicrobial function of ß-defensins that was not previously identified. Taken together, these data demonstrate that hBD-1 is a previously-unrecognized component of platelets that displays classic antimicrobial activity and, in addition, signals PMNs to extrude DNA lattices that capture and kill bacteria.


Assuntos
Toxinas Bacterianas/imunologia , Plaquetas/metabolismo , Proteínas Hemolisinas/imunologia , Neutrófilos/imunologia , Staphylococcus aureus/imunologia , beta-Defensinas/metabolismo , Toxinas Bacterianas/metabolismo , Plaquetas/enzimologia , Plaquetas/imunologia , Linhagem Celular Tumoral , Células HeLa , Proteínas Hemolisinas/metabolismo , Humanos , Neutrófilos/metabolismo , Ativação Plaquetária , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transdução de Sinais , Staphylococcus aureus/crescimento & desenvolvimento , beta-Defensinas/genética
15.
Arterioscler Thromb Vasc Biol ; 32(4): 997-1004, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22328780

RESUMO

OBJECTIVE: Translation initiation of eukaryotic mRNAs typically occurs by cap-dependent ribosome scanning mechanism. However, certain mRNAs are translated by ribosome assembly at internal ribosome entry sites (IRESs). Whether IRES-mediated translation occurs in stressed primary human endothelial cells (ECs) is unknown. METHODS AND RESULTS: We performed microarray analysis of polyribosomal mRNA from ECs to identify IRES-containing mRNAs. Cap-dependent translation was disabled by poliovirus (PV) infection and confirmed by loss of polysome peaks, detection of eukaryotic initiation factor (eIF) 4G cleavage, and decreased protein synthesis. We found that 87.4% of mRNAs were dissociated from polysomes in virus-infected ECs. Twelve percent of mRNAs remained associated with polysomes, and 0.6% were enriched ≥2-fold in polysome fractions from infected ECs. Quantitative reverse transcription-polymerase chain reaction confirmed the microarray findings for 31 selected mRNAs. We found that enriched polysome associations of programmed cell death 8 (PDCD8) and JunB mRNA resulted in increased protein expression in PV-infected ECs. The presence of IRESs in the 5' untranslated region of PDCD8 mRNA, but not of JunB mRNA, was confirmed by dicistronic analysis. CONCLUSIONS: We show that microarray profiling of polyribosomal mRNA transcripts from PV-infected ECs successfully identifies mRNAs whose translation is preserved in the face of stress-induced, near complete cessation of cap-dependent initiation. Nevertheless, internal ribosome entry is not the only mechanism responsible for this privileged translation.


Assuntos
Fator de Indução de Apoptose/biossíntese , Células Endoteliais/virologia , Poliovirus/patogenicidade , Proteínas Proto-Oncogênicas c-jun/biossíntese , RNA Mensageiro/metabolismo , Ribossomos/virologia , Regiões 5' não Traduzidas , Fator de Indução de Apoptose/genética , Linhagem Celular , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Genes Reporter , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/virologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-jun/genética , Capuzes de RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribossomos/metabolismo , Transfecção
16.
Curr Opin Hematol ; 19(5): 385-91, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22814651

RESUMO

PURPOSE OF REVIEW: It is now well appreciated that megakaryocytes invest platelets with a diverse repertoire of messenger RNAs (mRNAs), which are competent for translation. Herein we describe what is currently known regarding the expression, function, and clinical significance of mRNAs in platelets. RECENT FINDINGS: Although mRNA was detected in platelets nearly 30 years ago, we are only beginning to understand the roles of mRNA in platelet biology and human disease. Recent studies have shown that megakaryocytes specifically sort, rather than randomly transfer, mRNA to platelets during thrombopoiesis. As a result, platelets are released into the circulation with thousands of mRNAs. The emergence of next-generation RNA sequencing has demonstrated that platelet mRNAs possess classic structural features, which include untranslated regions and open reading frames. There is also growing evidence that platelet mRNA expression patterns are altered in human disease. SUMMARY: Intense investigation of platelet mRNA has shed considerable light on predicted functions of platelets and identified previously unrecognized attributes of platelets. Lessons learned from platelet mRNA is presented in this review.


Assuntos
Plaquetas/fisiologia , RNA Mensageiro/fisiologia , Plaquetas/metabolismo , Humanos , RNA Mensageiro/metabolismo , Trombopoese/fisiologia
17.
Thromb Res ; 231: 170-181, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-36058760

RESUMO

Autophagy, the continuous recycling of intracellular building blocks, molecules, and organelles is necessary to preserve cellular function and homeostasis. In this context, it was demonstrated that autophagy plays an important role in megakaryopoiesis, the development and differentiation of hematopoietic progenitor cells into megakaryocytes. Furthermore, in recent years, autophagic proteins were detected in platelets, anucleate cells generated by megakaryocytes, responsible for hemostasis, thrombosis, and a key cell in inflammation and host immune responses. In the last decade studies have indicated the occurrence of autophagy in platelets. Moreover, autophagy in platelets was subsequently demonstrated to be involved in platelet aggregation, adhesion, and thrombus formation. Here, we review the current knowledge about autophagy in platelets, its function, and clinical implications. However, at the advent of platelet autophagy research, additional discoveries derived from evolving work will be required to precisely define the contributions of autophagy in platelets, and to expand the ever increasing physiologic and pathologic roles these remarkable and versatile blood cells play.


Assuntos
Plaquetas , Trombose , Humanos , Plaquetas/metabolismo , Megacariócitos/patologia , Trombopoese , Trombose/patologia , Autofagia , Biologia
18.
J Exp Med ; 203(11): 2433-40, 2006 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-17060476

RESUMO

Tissue factor (TF) is an essential cofactor for the activation of blood coagulation in vivo. We now report that quiescent human platelets express TF pre-mRNA and, in response to activation, splice this intronic-rich message into mature mRNA. Splicing of TF pre-mRNA is associated with increased TF protein expression, procoagulant activity, and accelerated formation of clots. Pre-mRNA splicing is controlled by Cdc2-like kinase (Clk)1, and interruption of Clk1 signaling prevents TF from accumulating in activated platelets. Elevated intravascular TF has been reported in a variety of prothrombotic diseases, but there is debate as to whether anucleate platelets-the key cellular effector of thrombosis-express TF. Our studies demonstrate that human platelets use Clk1-dependent splicing pathways to generate TF protein in response to cellular activation. We propose that platelet-derived TF contributes to the propagation and stabilization of a thrombus.


Assuntos
Coagulação Sanguínea/imunologia , Plaquetas/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA/imunologia , Transdução de Sinais/imunologia , Tromboplastina/genética , Plaquetas/enzimologia , Humanos , Ativação Plaquetária/imunologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Precursores de RNA/genética , Tromboplastina/biossíntese
19.
Blood ; 115(18): 3801-9, 2010 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-20086251

RESUMO

Platelets are classified as terminally differentiated cells that are incapable of cellular division. However, we observe that anucleate human platelets, either maintained in suspension culture or captured in microdrops, give rise to new cell bodies packed with respiring mitochondria and alpha-granules. Platelet progeny formation also occurs in whole blood cultures. Newly formed platelets are structurally indistinguishable from normal platelets, are able to adhere and spread on extracellular matrix, and display normal signal-dependent expression of surface P-selectin and annexin V. Platelet progeny formation is accompanied by increases in biomass, cellular protein levels, and protein synthesis in expanding populations. Platelet numbers also increase during ex vivo storage. These observations indicate that platelets have a previously unrecognized capacity for producing functional progeny, which involves a form of cell division that does not require a nucleus. Because this new function of platelets occurs outside of the bone marrow milieu, it raises the possibility that thrombopoiesis continues in the bloodstream.


Assuntos
Biomarcadores , Plaquetas/citologia , Plaquetas/metabolismo , Proliferação de Células , Selectina-P/metabolismo , Anexina A5/metabolismo , Plaquetas/ultraestrutura , Eletroforese em Gel Bidimensional , Humanos , Agregação Plaquetária , Contagem de Plaquetas , Trombopoese
20.
Autophagy ; 18(7): 1534-1550, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34689707

RESUMO

Platelets mediate central aspects of host responses during sepsis, an acute profoundly systemic inflammatory response due to infection. Macroautophagy/autophagy, which mediates critical aspects of cellular responses during inflammatory conditions, is known to be a functional cellular process in anucleate platelets, and is essential for normal platelet functions. Nevertheless, how sepsis may alter autophagy in platelets has never been established. Using platelets isolated from septic patients and matched healthy controls, we show that during clinical sepsis, the number of autophagosomes is increased in platelets, most likely due to an accumulation of autophagosomes, some containing mitochondria and indicative of mitophagy. Therefore, autophagy induction or early-stage autophagosome formation (as compared to decreased later-stage autophagosome maturation or autophagosome-late endosome/lysosome fusion) is normal or increased. This was consistent with decreased fusion of autophagosomes with lysosomes in platelets. EPG5 (ectopic P-granules autophagy protein 5 homolog), a protein essential for normal autophagy, expression did increase, while protein-protein interactions between EPG5 and MAP1LC3/LC3 (which orchestrate the fusion of autophagosomes and lysosomes) were significantly reduced in platelets during sepsis. Furthermore, data from a megakaryocyte model demonstrate the importance of TLR4 (toll like receptor 4), LPS-dependent signaling for regulating this mechanism. Similar phenotypes were also observed in platelets isolated from a patient with Vici syndrome: an inherited condition caused by a naturally occurring, loss-of-function mutation in EPG5. Together, we provide evidence that autophagic functions are aberrant in platelets during sepsis, due in part to reduced EPG5-LC3 interactions, regulated by TLR4 engagement, and the resultant accumulation of autophagosomes.Abbreviations: ACTB: beta actin; CLP: cecal ligation and puncture; Co-IP: co-immunoprecipitation; DAP: death associated protein; DMSO: dimethyl sulfoxide; EPG5: ectopic P-granules autophagy protein 5 homolog; ECL: enhanced chemiluminescence; HBSS: Hanks' balanced salt solution; HRP: horseradish peroxidase; ICU: intensive care unit; LPS: lipopolysaccharide; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MKs: megakaryocytes; PFA: paraformaldehyde; PBS: phosphate-buffered saline; PLA: proximity ligation assay; pRT-PCR: quantitative real-time polymerase chain reaction; RT: room temperature; SQSTM1/p62: sequestosome 1; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; TLR4: toll like receptor 4; TEM: transmission electron microscopy; WGA: wheat germ agglutinin.


Assuntos
Proteínas Relacionadas à Autofagia , Autofagia , Plaquetas , Proteínas Associadas aos Microtúbulos , Sepse , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Plaquetas/metabolismo , Humanos , Lipopolissacarídeos , Lisossomos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Sepse/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA