Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Pharm Res ; 37(10): 204, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32989514

RESUMO

PURPOSE: Dermal open flow microperfusion (dOFM) has previously demonstrated its utility to assess the bioequivalence (BE) of topical drug products in a clinical study. We aimed to characterize the sources of variability in the dermal pharmacokinetic data from that study. METHODS: Exploratory statistical analyses were performed with multivariate data from a clinical dOFM-study in 20 healthy adults evaluating the BE, or lack thereof, of Austrian test (T) and U.S. reference (R) acyclovir cream, 5% products. RESULTS: The overall variability of logAUC values (CV: 39% for R and 45% for T) was dominated by inter-subject variability (R: 82%, T: 91%) which correlated best with the subject's skin conductance. Intra-subject variability was 18% (R) and 9% (T) of the overall variability; skin treatment sites or methodological factors did not significantly contribute to that variability. CONCLUSIONS: Inter-subject variability was the major component of overall variability for acyclovir, and treatment site location did not significantly influence intra-subject variability. These results support a dOFM BE study design with T and R products assessed simultaneously on the same subject, where T and R treatment sites do not necessarily need to be next to each other. Localized variation in skin microstructure may be primarily responsible for intra-subject variability.


Assuntos
Aciclovir/farmacocinética , Perfusão/métodos , Pele/efeitos dos fármacos , Pele/metabolismo , Aciclovir/administração & dosagem , Administração Cutânea , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Absorção Cutânea , Equivalência Terapêutica
2.
Pharmaceutics ; 15(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38004542

RESUMO

Topical delivery systems (TDSs) enable the direct transport of analgesics into areas of localized pain and thus minimize the side effects of administration routes that rely on systemic drug distribution. For musculoskeletal pain, clinicians frequently prescribe topical products containing lidocaine or diclofenac. This study assessed whether drug delivery from a TDS into muscle tissue occurs mainly via direct diffusion or systemic transport. An investigational TDS containing 108 mg lidocaine (SP-103, 5.4% lidocaine), a commercially available TDS containing 36 mg lidocaine (ZTlido®, 1.8% lidocaine), and a topical pain relief gel (Pennsaid®, 2% diclofenac) were tested. Using open flow microperfusion (OFM), interstitial fluid from the dermis, subcutaneous adipose tissue (SAT), and muscle was continuously sampled to assess drug penetration in all tissue layers. Ex vivo and in vivo experiments showed a higher diffusive transport of lidocaine compared to diclofenac. The data showed a clear contribution of diffusive transport to lidocaine concentration, with SP-103 5.4% resulting in a significantly higher lidocaine concentration in muscle tissue than commercially available ZTlido® (p = 0.008). These results indicate that SP-103 5.4% is highly effective in delivering lidocaine into muscle tissue in areas of localized pain for the treatment of musculoskeletal pain disorders (e.g., lower back pain).

3.
Biomedicines ; 10(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35453606

RESUMO

The treatment of chronic wounds still challenges modern medicine because of these wounds' heterogenic pathophysiology. Processes such as inflammation, ischemia and bacterial infection play major roles in the progression of a chronic wound. In recent years, preclinical wound models have been used to understand the underlying processes of chronic wound formation. However, the wound models used to investigate chronic wounds often lack translatability from preclinical models to patients, and often do not take exaggerated inflammation into consideration. Therefore, we aimed to investigate prolonged inflammation in a porcine wound model by using resiquimod, a TLR7 and TLR8 agonist. Pigs received full thickness excisional wounds, where resiquimod was applied daily for 6 days, and untreated wounds served as controls. Dressing change, visual documentation and wound scoring were performed daily. Biopsies were collected for histological as well as gene expression analysis. Resiquimod application on full thickness wounds induced a visible inflammation of wounds, resulting in delayed wound healing compared to non-treated control wounds. Gene expression analysis revealed high levels of IL6, MMP1 and CD68 expression after resiquimod application, and histological analysis showed increased immune cell infiltration. By using resiquimod, we were able to show that prolonged inflammation delayed wound healing, which is often observed in chronic wounds in patients. The model we used shows the importance of inflammation in wound healing and gives an insight into the progression of chronic wounds.

4.
Biomed Phys Eng Express ; 6(6): 065031, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33843658

RESUMO

OBJECTIVE: To implement OFM-recirculation and OFM-suction capable of direct and absolute in-vivo quantification of albumin in the ISF of pigs. APPROACH: OFM-recirculation and OFM-suction were used to collect ISF in-vivo in pigs and lymph was collected from the same pigs after OFM sampling. Blood was collected before and after OFM sampling, plasma was isolated and mean albumin plasma concentrations per pig were used to yield albumin ISF-to-plasma ratios. We characterized the quality of the collected undiluted ISF via (1) stable albumin ISF-to-plasma ratio in OFM-recirculation and in OFM-suction samples, (2) comparison of albumin ISF-to-plasma ratios from OFM-recirculation and OFM-suction and (3) comparison of normalized albumin concentrations in the ISF and lymph. MAIN RESULTS: Both advanced OFM methods were successfully implemented and albumin was quantified from the collected ISF samples. OFM-recirculation reached stable albumin ISF-to-plasma ratios after 20 recirculation cycles. Absolute ISF albumin concentrations were 11.2 mg ml-1 (OFM-recirculation) and 14.2 mg ml-1 (OFM-suction). Albumin ISF-to-plasma ratios were 0.39 ± 0.04 (OFM -recirculation) and 0.47 ± 0.1 (OFM-suction). SIGNIFICANCE: Knowledge of the ISF protein content is of major importance when assessing PK/PD effects, especially of highly protein bound drugs. Up to now, only blood albumin values have been available to determine the degree of protein binding in several tissues. OFM-recirculation and OFM-suction allow direct, absolute quantification of albumin in ISF for the first time and enable investigation of the degree of protein binding of a drug directly in its target tissue.


Assuntos
Albuminas , Líquido Extracelular , Perfusão , Animais , Sucção , Suínos
5.
Sci Rep ; 11(1): 364, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33432026

RESUMO

Burn injuries initiate numerous processes such as heat shock response, inflammation and tissue regeneration. Reliable burn models are needed to elucidate the exact sequence of local events to be able to better predict when local inflammation triggers systemic inflammatory processes. In contrast to other ex vivo skin culture approaches, we used fresh abdominal skin explants to introduce contact burn injuries. Histological and ultrastructural analyses confirmed a partial-thickness burn pathology. Gene expression patterns and cytokine production profiles of key mediators of the local inflammation, heat shock response, and tissue regeneration were analyzed for 24 h after burn injury. We found significantly increased expression of factors involved in tissue regeneration and inflammation soon after burn injury. To investigate purely inflammation-mediated reactions we injected lipopolysaccharide into the dermis. In comparison to burn injury, lipopolysaccharide injection initiated an inflammatory response while expression patterns of heat shock and tissue regeneration genes were unaffected for the duration of the experiment. This novel ex vivo human skin model is suitable to study the local, early responses to skin injuries such as burns while maintaining an intact overall tissue structure and it gives valuable insights into local mechanisms at the very beginning of the wound healing process after burn injuries.


Assuntos
Reação de Fase Aguda/patologia , Queimaduras/patologia , Pele/patologia , Reação de Fase Aguda/genética , Reação de Fase Aguda/metabolismo , Adulto , Biópsia , Queimaduras/genética , Queimaduras/metabolismo , Citocinas/genética , Citocinas/metabolismo , Feminino , Humanos , Técnicas In Vitro , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Pessoa de Meia-Idade , Modelos Biológicos , Pele/lesões , Pele/metabolismo , Pele/ultraestrutura , Transcriptoma
6.
Diabetes Technol Ther ; 21(12): 740-744, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31448965

RESUMO

Continuous subcutaneous insulin infusion (CSII) is a widely used treatment for diabetes patients. Insulin infusion sets (CSII-catheters) are continuously optimized regarding size, handling and safety, but recurring dysfunction (kinking or occlusion), due to different user situations, behavior or chain of events, demand new ways to improve the functionality and safety in patients experiencing these issues. A novel CSII-catheter design (Lantern) features additional lateral perforations, which guarantee functionality even in case of kinking or occlusion. This study aimed to compare functionality, insulin distribution, and failure rate of Lantern and standard catheters using excised human adipose tissue samples. Novel Lantern CSII-catheters (open and artificially occluded) and commercially available standard CSII-catheters were inserted into adipose tissue samples. A mixture of insulin and contrast agent was infused as single bolus (7 IU) with an insulin infusion pump at highest flow rate (1 IU/s). Microtomography images and surface-to-volume ratios were used to assess insulin distribution and depot volume indicating the functionality of CSII-catheters. Failure rate was measured by flow-stop alerts of the pump. We found no difference in the volume of insulin depots compared with the nominal volume of 70 µL. Surface-to-volume ratios showed no significant difference among CSII-catheters. None of the catheters triggered any flow-stop alarm. The novel Lantern CSII-catheter design achieved similar insulin distribution as commercially available CSII-catheters. Moreover, functionality of Lantern CSII-catheters was guaranteed during occlusion, which is an improvement compared with standard CSII-catheters. We conclude that the novel CSII-catheter design has the potential to provide a valuable contribution to patient well-being and safety.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Hipoglicemiantes/administração & dosagem , Sistemas de Infusão de Insulina , Insulina/administração & dosagem , Adulto , Feminino , Humanos , Hipoglicemiantes/farmacocinética , Insulina/farmacocinética , Pessoa de Meia-Idade , Distribuição Tecidual
7.
J Invest Dermatol ; 139(12): 2425-2436.e5, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31220456

RESUMO

Extracellular vesicles (EVs) and their miRNA cargo are intercellular communicators transmitting their pleiotropic messages between different cell types, tissues, and body fluids. Recently, they have been reported to contribute to skin homeostasis and were identified as members of the senescence-associated secretory phenotype of human dermal fibroblasts. However, the role of EV-miRNAs in paracrine signaling during skin aging is yet unclear. Here we provide evidence for the existence of small EVs in the human skin and dermal interstitial fluid using dermal open flow microperfusion and show that EVs and miRNAs are transferred from dermal fibroblasts to epidermal keratinocytes in 2D cell culture and in human skin equivalents. We further show that the transient presence of senescent fibroblast derived small EVs accelerates scratch closure of epidermal keratinocytes, whereas long-term incubation impairs keratinocyte differentiation in vitro. Finally, we identify vesicular miR-23a-3p, highly secreted by senescent fibroblasts, as one contributor of the EV-mediated effect on keratinocytes in in vitro wound healing assays. To summarize, our findings support the current view that EVs and their miRNA cargo are members of the senescence-associated secretory phenotype and, thus, regulators of human skin homeostasis during aging.


Assuntos
Vesículas Extracelulares/metabolismo , Queratinócitos/metabolismo , MicroRNAs/metabolismo , Envelhecimento da Pele/genética , Western Blotting , Comunicação Celular/genética , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Vesículas Extracelulares/ultraestrutura , Fibroblastos/metabolismo , Fibroblastos/ultraestrutura , Humanos , Queratinócitos/ultraestrutura , Microscopia Eletrônica de Transmissão
8.
Physiol Meas ; 38(11): N138-N150, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28967873

RESUMO

OBJECTIVE: Pharmacokinetic and pharmacodynamic studies of topically applied drugs are commonly performed by sampling of interstitial fluid with dermal open flow microperfusion and subsequent analysis of the samples. However, the reliability of results from the measured concentration-time profile of the penetrating drug suffers from highly variable skin permeability to topically applied drugs that is mainly caused by inter- and intra-subject variations of the stratum corneum. Thus, statistically significant results can only be achieved by performing high numbers of experiments. To reduce the expenditures needed for such high experiment numbers we aimed to assess the correlation between skin permeability and skin impedance/skin admittance. APPROACH: We performed an ex vivo drug penetration study with human skin, based on the hypothesis that inter-subject variations of the respective concentration-time profiles can be correlated with variations of the passive electrical properties of the skin. Therefore, skin impedance and skin admittance were related to the skin permeability to the model drug Clobetasol-17-proprionate. MAIN RESULTS: The measured low frequency skin impedance and the skin admittance correlated linearly with the drug concentration-time profiles from dermal sampling. SIGNIFICANCE: Skin permeability can be assessed by measuring the passive electrical properties of the skin, which enables correction of skin permeability variations. This allows reduction of experiment numbers in future pharmacokinetic and pharmacodynamic studies with human skin ex vivo and in vivo and leads to diminished study costs.


Assuntos
Clobetasol/administração & dosagem , Clobetasol/metabolismo , Impedância Elétrica , Pele/metabolismo , Administração Cutânea , Humanos , Modelos Biológicos , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA