Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Phys Rev Lett ; 132(16): 160802, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38701482

RESUMO

Recent developments have led to the possibility of embedding machine learning tools into experimental platforms to address key problems, including the characterization of the properties of quantum states. Leveraging on this, we implement a quantum extreme learning machine in a photonic platform to achieve resource-efficient and accurate characterization of the polarization state of a photon. The underlying reservoir dynamics through which such input state evolves is implemented using the coined quantum walk of high-dimensional photonic orbital angular momentum and performing projective measurements over a fixed basis. We demonstrate how the reconstruction of an unknown polarization state does not need a careful characterization of the measurement apparatus and is robust to experimental imperfections, thus representing a promising route for resource-economic state characterization.

2.
Rep Prog Phys ; 84(1): 012402, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33232945

RESUMO

Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades.

3.
Opt Express ; 28(24): 35427-35437, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379657

RESUMO

Optical interrogation of tissues is broadly considered in biomedical applications. Nevertheless, light scattering by tissue limits the resolution and accuracy achieved when investigating sub-surface tissue features. Light carrying optical angular momentum or complex polarization profiles, offers different propagation characteristics through scattering media compared to light with unstructured beam profiles. Here we discuss the behaviour of structured light scattered by tissue-mimicking phantoms. We study the spatial and the polarization profile of the scattered modes as a function of a range of optical parameters of the phantoms, with varying scattering and absorption coefficients and of different lengths. These results show the non-trivial trade-off between the advantages of structured light profiles and mode broadening, stimulating further investigations in this direction.


Assuntos
Microscopia de Polarização/métodos , Imagens de Fantasmas , Espalhamento de Radiação , Biomimética , Luz , Modelos Biológicos
4.
Phys Rev Lett ; 124(16): 160401, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383956

RESUMO

Structured light is attracting significant attention for its diverse applications in both classical and quantum optics. The so-called vector vortex beams display peculiar properties in both contexts due to the nontrivial correlations between optical polarization and orbital angular momentum. Here we demonstrate a new, flexible experimental approach to the classification of vortex vector beams. We first describe a platform for generating arbitrary complex vector vortex beams inspired to photonic quantum walks. We then exploit recent machine learning methods-namely, convolutional neural networks and principal component analysis-to recognize and classify specific polarization patterns. Our study demonstrates the significant advantages resulting from the use of machine learning-based protocols for the construction and characterization of high-dimensional resources for quantum protocols.

5.
Rep Prog Phys ; 82(1): 016001, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30421725

RESUMO

Photonic quantum technologies represent a promising platform for several applications, ranging from long-distance communications to the simulation of complex phenomena. Indeed, the advantages offered by single photons do make them the candidate of choice for carrying quantum information in a broad variety of areas with a versatile approach. Furthermore, recent technological advances are now enabling first concrete applications of photonic quantum information processing. The goal of this manuscript is to provide the reader with a comprehensive review of the state of the art in this active field, with a due balance between theoretical, experimental and technological results. When more convenient, we will present significant achievements in tables or in schematic figures, in order to convey a global perspective of the several horizons that fall under the name of photonic quantum information.

6.
Phys Rev Lett ; 122(1): 013601, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012655

RESUMO

Structured photons are nowadays an important resource in classical and quantum optics due to the richness of properties they show under propagation, focusing, and in their interaction with matter. Vectorial modes of light in particular, a class of modes where the polarization varies across the beam profile, have already been used in several areas ranging from microscopy to quantum information. One of the key ingredients needed to exploit the full potential of complex light in the quantum domain is the control of quantum interference, a crucial resource in fields like quantum communication, sensing, and metrology. Here we report a tunable Hong-Ou-Mandel interference between vectorial modes of light. We demonstrate how a properly designed spin-orbit device can be used to control quantum interference between vectorial modes of light by simply adjusting the device parameters and no need of interferometric setups. We believe our result can find applications in fundamental research and quantum technologies based on structured light by providing a new tool to control quantum interference in a compact, efficient, and robust way.

7.
Phys Rev Lett ; 123(23): 230502, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868431

RESUMO

Introducing quantum sensors as a solution to real world problems demands reliability and controllability outside of laboratory conditions. Producers and operators ought to be assumed to have limited resources readily available for calibration, and yet, they should be able to trust the devices. Neural networks are almost ubiquitous for similar tasks for classical sensors: here we show the applications of this technique to calibrating a quantum photonic sensor. This is based on a set of training data, collected only relying on the available probe states, hence reducing overhead. We found that covering finely the parameter space is key to achieving uncertainties close to their ultimate level. This technique has the potential to become the standard approach to calibrate quantum sensors.

8.
Phys Rev Lett ; 122(6): 063602, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822072

RESUMO

Bosonic interference is a fundamental physical phenomenon, and it is believed to lie at the heart of quantum computational advantage. It is thus necessary to develop practical tools to witness its presence, both for a reliable assessment of a quantum source and for fundamental investigations. Here we describe how linear interferometers can be used to unambiguously witness genuine n-boson indistinguishability. The amount of violation of the proposed witnesses bounds the degree of multiboson indistinguishability, for which we also provide a novel intuitive model using set theory. We experimentally implement this test to bound the degree of three-photon indistinguishability in states we prepare using parametric down-conversion. Our approach results in a convenient tool for practical photonic applications, and may inspire further fundamental advances based on the operational framework we adopt.

9.
Phys Rev Lett ; 123(14): 140501, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702172

RESUMO

Many disordered systems show a superdiffusive dynamics, intermediate between the diffusive one, typical of a classical stochastic process, and the so-called ballistic behavior, which is generally expected for the spreading in a quantum process. We have experimentally investigated the superdiffusive behavior of a quantum walk, whose dynamics can be related to energy transport phenomena, with a resolution which is high enough to clearly distinguish between different disorder regimes. By our experimental setup, the region between ballistic and diffusive spreading can be effectively scanned by suitably setting few degrees of freedom and without applying any decoherence to the quantum walk evolution.

10.
Phys Rev Lett ; 122(13): 130401, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-31012619

RESUMO

The decay of an unstable system is usually described by an exponential law. Quantum mechanics predicts strong deviations of the survival probability from the exponential: Indeed, the decay is initially quadratic, while at very large times it follows a power law, with superimposed oscillations. The latter regime is particularly elusive and difficult to observe. Here we employ arrays of single-mode optical waveguides, fabricated by femtosecond laser direct inscription, to implement quantum systems where a discrete state is coupled and can decay into a continuum. The optical modes correspond to distinct quantum states of the photon, and the temporal evolution of the quantum system is mapped into the spatial propagation coordinate. By injecting coherent light states in the fabricated photonic structures and by measuring a small scattered fraction of such light with an unprecedented dynamic range, we are able to experimentally observe not only the exponential decay regime, but also the quadratic Zeno region and the power-law decay at long evolution times.

11.
Phys Rev Lett ; 122(2): 020503, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30720314

RESUMO

The capability to generate and manipulate quantum states in high-dimensional Hilbert spaces is a crucial step for the development of quantum technologies, from quantum communication to quantum computation. One-dimensional quantum walk dynamics represents a valid tool in the task of engineering arbitrary quantum states. Here we affirm such potential in a linear-optics platform that realizes discrete-time quantum walks in the orbital angular momentum degree of freedom of photons. Different classes of relevant qudit states in a six-dimensional space are prepared and measured, confirming the feasibility of the protocol. Our results represent a further investigation of quantum walk dynamics in photonics platforms, paving the way for the use of such a quantum state-engineering toolbox for a large range of applications.

12.
Entropy (Basel) ; 21(8)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-33267481

RESUMO

Quantum teleportation is one of the most striking consequence of quantum mechanics and is defined as the transmission and reconstruction of an unknown quantum state over arbitrary distances. This concept was introduced for the first time in 1993 by Charles Bennett and coworkers, it has then been experimentally demonstrated by several groups under different conditions of distance, amount of particles and even with feed forward. After 20 years from its first realization, this contribution reviews the experimental implementations realized at the Quantum Optics Group of the University of Rome La Sapienza.

13.
Phys Rev Lett ; 121(14): 140501, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339412

RESUMO

Quantum teleportation establishes a correspondence between an entangled state shared by two separate parties that can communicate classically and the presence of a quantum channel connecting the two parties. The standard benchmark for quantum teleportation, based on the average fidelity between the input and output states, indicates that some entangled states do not lead to channels which can be certified to be quantum. It was recently shown that if one considers a finer-grained witness, then all entangled states can be certified to produce a nonclassical teleportation channel. Here we experimentally demonstrate a complete characterization of a new family of such witnesses, of the type proposed in Phys. Rev. Lett. 119, 110501 (2017)PRLTAO0031-900710.1103/PhysRevLett.119.110501 under different conditions of noise. We report nonclassical teleportation using quantum states that cannot achieve average fidelity of teleportation above the classical limit. We further use the violation of these witnesses to estimate the negativity of the shared state. Our results have fundamental implications in quantum information protocols and may also lead to new applications and quality certification of quantum technologies.

14.
Phys Rev Lett ; 121(17): 173901, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411929

RESUMO

In this work, we experimentally show that quantum entanglement can be symmetry protected in the interaction with a single subwavelength plasmonic nanoaperture, with a total volume of V∼0.2λ^{3}. In particular, we experimentally demonstrate that two-photon entanglement can be either completely preserved or completely lost after the interaction with the nanoaperture, solely depending on the relative phase between the quantum states. We achieve this effect by using specially engineered two-photon states to match the properties of the nanoaperture. In this way we can access a symmetry protected state, i.e., a state constrained by the geometry of the interaction to retain its entanglement. In spite of the small volume of interaction, we show that the symmetry protected entangled state retains its main properties. This connection between nanophotonics and quantum optics probes the fundamental limits of the phenomenon of quantum interference.

15.
Phys Rev Lett ; 119(13): 130504, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-29341700

RESUMO

A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.

16.
Nature ; 538(7626): 451-453, 2016 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-27786218
17.
Opt Express ; 24(15): 16390-5, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27464091

RESUMO

When a phase singularity is suddenly imprinted on the axis of an ordinary Gaussian beam, an optical vortex appears and starts to grow radially, by effect of diffraction. This radial growth and the subsequent evolution of the optical vortex under focusing or imaging can be well described in general within the recently introduced theory of circular beams, which generalize the hypergeometric-Gaussian beams and which obey novel kinds of ABCD rules. Here, we investigate experimentally these vortex propagation phenomena and test the validity of circular-beam theory. Moreover, we analyze the difference in radial structure between the newly generated optical vortex and the vortex obtained in the image plane, where perfect imaging would lead to complete closure of the vortex core.

18.
Phys Rev Lett ; 114(9): 090201, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793783

RESUMO

Quantum mechanical decay, Fano interference, and bound states with energy in the continuum are ubiquitous phenomena in different areas of physics. Here we experimentally demonstrate that particle statistics strongly affects quantum mechanical decay in a multiparticle system. By considering propagation of two-photon states in engineered photonic lattices, we simulate quantum decay of two noninteracting particles in a multilevel Fano-Anderson model. Remarkably, when the system sustains a bound state in the continuum, fractional decay is observed for bosonic particles, but not for fermionic ones. Complete decay in the fermionic case arises because of the Pauli exclusion principle, which forbids the bound state to be occupied by the two fermions. Our experiment indicates that particle statistics can tune many-body quantum decay from fractional to complete.

19.
Phys Rev Lett ; 112(14): 140501, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24765931

RESUMO

In quantum mechanics, observing is not a passive act. Consider a system of two quantum particles A and B: if a measurement apparatus M is used to make an observation on B, the overall state of the system AB will typically be altered. When this happens, no matter which local measurement is performed, the two objects A and B are revealed to possess peculiar correlations known as quantum discord. Here, we demonstrate experimentally that the very act of local observation gives rise to an activation protocol which converts discord into distillable entanglement, a stronger and more useful form of quantum correlations, between the apparatus M and the composite system AB. We adopt a flexible two-photon setup to realize a three-qubit system (A, B, M) with programmable degrees of initial correlations, measurement interaction, and characterization processes. Our experiment demonstrates the fundamental mechanism underpinning the ubiquitous act of observing the quantum world and establishes the potential of discord in entanglement generation.

20.
Phys Rev Lett ; 113(6): 060503, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-25148310

RESUMO

"Twisted photons" are photons carrying a well-defined nonzero value of orbital angular momentum (OAM). The associated optical wave exhibits a helical shape of the wavefront (hence the name) and an optical vortex at the beam axis. The OAM of light is attracting a growing interest for its potential in photonic applications ranging from particle manipulation, microscopy, and nanotechnologies to fundamental tests of quantum mechanics, classical data multiplexing, and quantum communication. Hitherto, however, all results obtained with optical OAM were limited to laboratory scale. Here, we report the experimental demonstration of a link for free-space quantum communication with OAM operating over a distance of 210 m. Our method exploits OAM in combination with optical polarization to encode the information in rotation-invariant photonic states, so as to guarantee full independence of the communication from the local reference frames of the transmitting and receiving units. In particular, we implement quantum key distribution, a protocol exploiting the features of quantum mechanics to guarantee unconditional security in cryptographic communication, demonstrating error-rate performances that are fully compatible with real-world application requirements. Our results extend previous achievements of OAM-based quantum communication by over 2 orders of magnitude in the link scale, providing an important step forward in achieving the vision of a worldwide quantum network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA