Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 287
Filtrar
1.
Inorg Chem ; 63(21): 9527-9538, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38217471

RESUMO

U(IV) cyclometalated complexes have shown rich reactivity, but their low oxidation state analogues still remain rare. Herein, we report the isolation of [K(2.2.2-cryptand)][UIII{N(SiMe3)2}2(κ2-C,N-CH2SiMe2NSiMe3)], 1, from the reduction of [UIII{N(SiMe)2}3] with KC8 and 2.2.2-cryptand at room temperature. Cyclic voltammetry studies demonstrate that 1 has a reduction potential similar to that of the previously reported [K(2.2.2-cryptand)][UII{N(SiMe)2}3] (Epc = -2.6 V versus Fc+/0 and Epc = -2.8 V versus Fc+/0, respectively). Complex 1, indeed, shows similar reducing abilities upon reactions with 4,4'-bipyridine, 2,2'-bipyridine, and 1-azidoadamantane. Interestingly, 1 was also found to be the first example of a mononuclear U(III) complex that is capable of reducing pyridine. In addition, it is shown that a wide variety of substrates can be inserted into the U-C bond, forming new U(III) metallacycles. These results highlight that cyclometalated U(III) complexes can serve as versatile precursors for a broad range of reactivity and for assembling a variety of novel chemical architectures.

2.
Angew Chem Int Ed Engl ; 63(6): e202317346, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38100190

RESUMO

The high stability of the + IVoxidation state limits thorium redox reactivity. Here we report the synthesis and the redox reactivity of two Th(IV) complexes supported by the arene-tethered tris(siloxide) tripodal ligands [(KOSiR2 Ar)3 -arene)]. The two-electron reduction of these Th(IV) complexes generates the doubly reduced [KTh((OSi(Ot Bu)2 Ar)3 -arene)(THF)2 ] (2OtBu ) and [K(2.2.2-cryptand)][Th((OSiPh2 Ar)3 -arene)(THF)2 ](2Ph -crypt) where the formal oxidation state of Th is +II. Structural and computational studies indicate that the reduction occurred at the arene anchor of the ligand. The robust tripodal frameworks store in the arene anchor two electrons that become available at the metal center for the two-electron reduction of a broad range of substrates (N2 O, COT, CHT, Ph2 N2 , Ph3 PS and O2 ) while retaining the ligand framework. This work shows that arene-tethered tris(siloxide) tripodal ligands allow implementation of two-electron redox chemistry at the thorium center while retaining the ligand framework unchanged.

3.
J Am Chem Soc ; 145(48): 26435-26443, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37991736

RESUMO

Dinitrogen cleavage provides an attractive but poorly studied route to the assembly of multimetallic nitride clusters. Here, we show that the monoelectron reduction of the dinitrogen complex [{U(OC6H2-But3-2,4,6)3}2(µ-η2:η2-N2)], 1, allows us to generate, for the first time, a uranium complex presenting a rare triply reduced N2 moiety ((µ-η2:η2-N2)•3-). Importantly, the bound dinitrogen can be further reduced, affording the U4N4 cubane cluster, 3, and the U6N6 edge-shared cubane cluster, 4, thus showing that (N2)•3- can be an intermediate in nitride formation. The tetranitride cluster showed high reactivity with electrophiles, yielding ammonia quantitatively upon acid addition and promoting CO cleavage to yield quantitative conversion of nitride into cyanide. These results show that dinitrogen reduction provides a versatile route for the assembly of large highly reactive nitride clusters, with U6N6 providing the first example of a molecular nitride of any metal formed from a complete cleavage of three N2 molecules.

4.
J Am Chem Soc ; 145(29): 16271-16283, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440295

RESUMO

The synthesis of molecular uranium complexes in oxidation states lower than +3 remains a challenge despite the interest for their multielectron transfer reactivity and electronic structures. Herein, we report the one- and two-electron reduction of a U(III) complex supported by an arene-tethered tris(siloxide) tripodal ligand leading to the mono-reduced complexes, [K(THF)U((OSi(OtBu)2Ar)3-arene)(THF)] (2) and [K(2.2.2-cryptand)][U((OSi(OtBu)2Ar)3-arene)(THF)] (2-crypt), and to the di-reduced U(I) synthons, [K2(THF)3U((OSi(OtBu)2Ar)3-arene)]∞ (3) and [(K(2.2.2-cryptand))]2[U((OSi(OtBu)2Ar)3-arene)] (3-crypt). EPR and UV/vis/NIR spectroscopies, magnetic, cyclic voltammetry, and computational studies provide strong evidence that complex 2-crypt is best described as a U(II), where the U(II) is stabilized by δ-bonding interactions between the arene anchor and the uranium frontier orbitals, whereas complexes 3 and 3-crypt are best described as having a U(III) ion supported by the di-reduced arene anchor. Three quasi-reversible redox waves at E1/2 = -3.27, -2.45, and -1.71 V were identified by cyclic voltammetry studies and were assigned to the U(IV)/U(III), U(III)/U(II), and U(II)/U(III)-(arene)2- redox couples. The ability of complexes 2 and 3 in transferring two- and three-electrons, respectively, to oxidizing substrates was confirmed by the reaction of 2 with azobenzene (PhNNPh), leading to the U(IV) complex, [K(Et2O)U((OSi(OtBu)2Ar)3-arene)(PhNNPh)(THF)] (4), and of complex 3 with cycloheptatriene, yielding the U(IV) complex, [(K(Et2O)2)U((OSi(OtBu)2Ar)3-arene)(η7-C7H7)]∞ (6). These results demonstrate that the arene-tethered tris(siloxide) tripodal ligand provides an excellent platform for accessing low-valent uranium chemistry while implementing multielectron transfer pathways as shown by the reactivity of complex 3, which provides the third example of a U(I) synthon.

5.
Small ; 19(41): e2206999, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37317016

RESUMO

Solid-state proton conductors based on the use of metal-organic framework (MOF) materials as proton exchange membranes are being investigated as alternatives to the current state of the art. This study reports a new family of proton conductors based on MIL-101 and protic ionic liquid polymers (PILPs) containing different anions. By first installing protic ionic liquid (PIL) monomers inside the hierarchical pores of a highly stable MOF, MIL-101, then carrying out polymerization in situ, a series of PILP@MIL-101 composites was synthesized. The resulting PILP@MIL-101 composites not only maintain the nanoporous cavities and water stability of MIL-101, but the intertwined PILPs provide a number of opportunities for much-improved proton transport compared to MIL-101. The PILP@MIL-101 composite with HSO4 - anions shows superprotonic conductivity (6.3 × 10-2  S cm-1 ) at 85 °C and 98% relative humidity. The mechanism of proton conduction is proposed. In addition, the structures of the PIL monomers were determined by single crystal X-ray analysis, which reveals many strong hydrogen bonding interactions with O/NH···O distances below 2.6 Å.

6.
Inorg Chem ; 62(20): 7982-7992, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37165631

RESUMO

Nine new coordination polymers based on U(IV) and Th(IV) were synthesized solvothermally utilizing four different trianionic carboxylates (H3BHTC = biphenyl-3,4',5-tricarboxylic acid, H3NTB = 4,4',4″-nitrilotribenzoic acid, H3BTB = 4,4',4″-benzene-1,3,5-triyl-tris(benzoic acid), H3BTE = 4,4',4″-(1,3,5-benzenetriyltri-2,1-ethynediyl)trisbenzoic acid). The influence of the ligand architecture, the pH, the stoichiometry, the nature of the metal, and the concentration on the structure and dimensionality of the final actinide assembly is discussed. The H3BHTC ligand allowed the synthesis of a cationic three-dimensional (3D) framework [U(BHTC)(DMF)3]I (1), which is the first example of a cationic U(IV) polymer. The H3NTB ligand yielded the 3D neutral polymer [U3(NTB)4] (2) or the two-dimensional (2D) cationic polymer [U(NTB)(NMP)3]I (3), depending on the solvent. When conditions leading to (2) were used with a Th(IV) precursor, the 2D neutral polymer [Th(NTB)(DMF)3Cl] (4) was obtained. The ligand H3BTB allowed the synthesis of two 3D cationic networks [U(BTB)(DMF)2]I (5) and [U(BTB)(DMF)3]I (7) or the neutral 3D analogue [U3(BTB)4] (6), depending on the precursor's oxidation state and the acidity of the reaction mixture. The ligand H3BTE allowed the synthesis of the anionic 3D [(CH3)2NH2][U2(BTE)3] (8) framework featuring large accessible pores, and under the same conditions, an isostructural Th(IV) was also obtained [(CH3)2NH2][Th2(BTE)3] (8-Th). All isolated coordination polymers were characterized by single-crystal X-ray diffraction (SCXRD). The Langmuir surface areas of the U(IV) polymers (2), (7), and (8) increased from 140 to 310 m2/g owing to the increasing size of the linker, with polymer (8) showing a value that is comparable to the highest surface area reported to date. The effect of the postsynthetic solvent substitution was also studied, revealing a crystal-to-crystal transformation of the cationic framework (7) to the neutral framework [U(BTB)(THF)I] (7c).

7.
Nature ; 547(7663): 332-335, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28726827

RESUMO

Molecular nitrogen (N2) is cheap and widely available, but its unreactive nature is a challenge when attempting to functionalize it under mild conditions with other widely available substrates (such as carbon monoxide, CO) to produce value-added compounds. Biological N2 fixation can do this, but the industrial Haber-Bosch process for ammonia production operates under harsh conditions (450 degrees Celsius and 300 bar), even though both processes are thought to involve multimetallic catalytic sites. And although molecular complexes capable of binding and even reducing N2 under mild conditions are known, with co-operativity between metal centres considered crucial for the N2 reduction step, the multimetallic species involved are usually not well defined, and further transformation of N2-binding complexes to achieve N-H or N-C bond formation is rare. Haber noted, before an iron-based catalyst was adopted for the industrial Haber-Bosch process, that uranium and uranium nitride materials are very effective heterogeneous catalysts for ammonia production from N2. However, few examples of uranium complexes binding N2 are known, and soluble uranium complexes capable of transforming N2 into ammonia or organonitrogen compounds have not yet been identified. Here we report the four-electron reduction of N2 under ambient conditions by a fully characterized complex with two Uiii ions and three K+ centres held together by a nitride group and a flexible metalloligand framework. The addition of H2 and/or protons, or CO to the resulting complex results in the complete cleavage of N2 with concomitant N2 functionalization through N-H or N-C bond-forming reactions. These observations establish that a molecular uranium complex can promote the stoichiometric transformation of N2 into NH3 or cyanate, and that a flexible, electron-rich, multimetallic, nitride-bridged core unit is a promising starting point for the design of molecular complexes capable of cleaving and functionalizing N2 under mild conditions.

8.
Angew Chem Int Ed Engl ; 62(34): e202308625, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37387555

RESUMO

Bent (hetero)allenes such as carbodicarbenes and carbodiphosphoranes can act as neutral C-donor ligands, and diverse applications in coordination chemistry have been reported. N-Heterocyclic diazoolefins are heterocumulenes, which can function in a similar fashion as L-type ligands. Herein, we describe the synthesis and the reactivity of an anionic diazoolefin. This compound displays distinct reactivity compared to neutral diazoolefins, as evidenced by the preparation of diazo compounds via protonation, alkylation, or silylation. The anionic diazoolefin can be employed as an ambidentate, X-type ligand in salt metathesis reactions with metal halide complexes. Extrusion of dinitrogen was observed in a reaction with PCl(NiPr2 )2 , resulting in a stable phosphinocarbene.

9.
Angew Chem Int Ed Engl ; 62(9): e202215846, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36576035

RESUMO

Thorium redox chemistry is extremely scarce due to the high stability of ThIV . Here we report two unique examples of thorium arenide complexes prepared by reduction of a ThIV -siloxide complex in presence of naphthalene, the mononuclear arenide complex [K(OSi(Ot Bu)3 )3 Th(η6 -C10 H8 )] (1) and the inverse-sandwich complex [K(OSi(Ot Bu)3 )3 Th]2 (µ-η6 ,η6 -C10 H8 )] (2). The electrons stored in these complexes allow the reduction of a broad range of substrates (N2 O, AdN3 , CO2 , HBBN). Higher reactivity was found for the complex 1 which reacts with the diazoolefin IDipp=CN2 to yield the unexpected ThIV amidoalkynyl complex 5 via a terminal N-heterocyclic vinylidene intermediate. This work showed that arenides can act as convenient redox-active ligands for implementing thorium-ligand cooperative multielectron transfer and that the reactivity can be tuned by the arenide binding mode.

10.
Angew Chem Int Ed Engl ; 62(23): e202304051, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015011

RESUMO

Herein, we report the redox reactivity of a multimetallic uranium complex supported by triphenylsiloxide (-OSiPh3 ) ligands, where we show that low valent synthons can be stabilized via an unprecedented mechanism involving intramolecular ligand migration. The two- and three-electron reduction of the oxo-bridged diuranium(IV) complex [{(Ph3 SiO)3 (DME)U}2 (µ-O)], 4, yields the formal "UII /UIV ", 5, and "UI /UIV ", 6, complexes via ligand migration and formation of uranium-arene δ-bond interactions. Remarkably, complex 5 effects the two-electron reductive coupling of pyridine affording complex 7, which demonstrates that the electron-transfer is accompanied by ligand migration, restoring the original ligand arrangement found in 4. This work provides a new method for controlling the redox reactivity in molecular complexes of unstable, low-valent metal centers, and can lead to the further development of f-elements redox reactivity.

11.
Angew Chem Int Ed Engl ; 62(4): e202214899, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36445783

RESUMO

Homometallic copper complexes with alkenylidene ligands are discussed as intermediates in catalysis but the isolation of such complexes has remained elusive. Herein, we report the structural characterization of copper complexes with bridging and terminal alkenylidene ligands. The compounds were obtained by irradiation of CuI complexes with N-heterocyclic diazoolefin ligands. The complex with a terminal alkenylidene ligand required isolation in a crystalline matrix, and its structural characterization was enabled by in crystallo photolysis at low temperature.

12.
Angew Chem Int Ed Engl ; 62(25): e202303375, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37070765

RESUMO

The head-to-tail dimerization of N-heterocyclic diazoolefins is described. The products of these formal (3+3) cycloaddition reactions are strongly reducing quinoidal tetrazines. Oxidation of the tetrazines occurs in a stepwise fashion, and we were able to isolate a stable radical cation and diamagnetic dications. The latter are also accessible by oxidative dimerization of diazoolefins.


Assuntos
Compostos Heterocíclicos , Dimerização , Reação de Cicloadição , Cátions , Oxirredução
13.
J Am Chem Soc ; 144(7): 3222-3232, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138846

RESUMO

Thorium nitrides are likely intermediates in the reported cleavage and functionalization of dinitrogen by molecular thorium complexes and are attractive compounds for the study of multiple bond formation in f-element chemistry, but only one example of thorium nitride isolable from solution was reported. Here, we show that stable multimetallic azide/nitride thorium complexes can be generated by reduction of thorium azide precursors─a route that has failed so far to produce Th nitrides. Once isolated, the thorium azide/nitride clusters, M3Th═N═Th (M = K or Cs), are stable in solutions probably due to the presence of alkali ions capping the nitride, but their synthesis requires a careful control of the reaction conditions (solvent, temperature, nature of precursor, and alkali ion). The nature of the cation plays an important role in generating a nitride product and results in large structural differences with a bent Th═N═Th moiety found in the K-bound nitride as a result of a strong K-nitride interaction and a linear arrangement in the Cs-bound nitride. Reactivity studies demonstrated the ability of Th nitrides to cleave CO in ambient conditions yielding CN-.

14.
Chemistry ; 28(32): e202200893, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35388932

RESUMO

Dichalcogenolenes are archetypal redox non-innocent ligands with numerous applications. Herein, a diselenolene ligand with fundamentally different electronic properties is described. A mesoionic diselenolene was prepared by selenation of a C2-protected imidazolium salt. This ligand is diamagnetic, which is in contrast to the paramagnetic nature of standard dichalcogenolene monoanions. The new ligand is also redox-active, as demonstrated by isolation of a stable diselenolene radical dianion. The unique electronic properties of the new ligand give rise to unusual coordination chemistry. Thus, preparation of a hexacoordinate aluminum tris(diselenolene) complex and a Lewis acidic aluminate complex with two ligand-centered unpaired electrons was achieved.

15.
Inorg Chem ; 61(3): 1546-1551, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34986634

RESUMO

Borylated triazenes were synthesized by the dehydrocoupling of triazenes with 9-borabicyclo(3.3.1)nonane, by the condensation of triazenes with BEt3, or by the reaction of sodium triazenides with dialkyl- or diarylboron halides. The structures of the products were found to depend on the size of the substituents. Sterically demanding mesityl groups at boron or nitrogen gave rise to open-chain structures, whereas smaller substituents led to the formation of novel BN3 heterocycles.

16.
Inorg Chem ; 61(12): 5010-5016, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35290056

RESUMO

Passivation of perovskite films by ionic liquids (ILs) improves the performance (efficiency and stability) of perovskite solar cells (PSCs). However, the role of ILs in the passivation of perovskite films is not fully understood. Here, we report the reactions of commonly used ILs with the components of perovskites. The reaction of ILs with perovskite precursors (PbI2 and methylammonium iodide or formamidinium iodide) in a 1:1:1 molar ratio affords one-dimensional (1D) salts composed of the IL cation interspersed along infinite 1D polymeric [PbI3]-n chains. If the IL is applied in excess, the resulting crystal is composed of six cations surrounding a discrete [Pb3I12]6- cluster. All the isolated salts were unambiguously characterized by single-crystal X-ray diffraction analysis, which also reveals extensive hydrogen-bonding interactions.

17.
Angew Chem Int Ed Engl ; 61(24): e202201823, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35348279

RESUMO

Thirteen palladium-ligand assemblies with different structures and topologies were investigated for the ability to bind lithium ions. In one case, the addition of LiBF4 resulted in a profound structural rearrangement, converting a dincluclear [Pd2 L4 ]4+ complex into a low-symmetry [Pd4 L8 ]8+ assembly with two binding pockets for solvated LiBF4 ion pairs. The rearrangement could only be induced by Li+ , indicating highly specific host-guest interactions. A structural analysis of the [Pd4 L8 ]8+ receptor revealed a compact structure with multiple intramolecular interactions, reminiscent of what is seen for natural and synthetic foldamers.

18.
Angew Chem Int Ed Engl ; 61(48): e202213429, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36289058

RESUMO

The aggregation-induced emission properties of tetraarylethenes (TAEs) have led to numerous applications in chemistry, biology, and materials science. Herein, we describe two fluorinated tetraarylethenes, which can be employed as universal tags for the synthesis of solid state luminogens. The tags are accessible in one or two steps from commercially available starting materials. Facile coupling reactions with ubiquitous substrates such as thiols, alcohols, amines, phosphines, aldehydes, and enamines allow preparing a wide range of TAE conjugates, including tagged amino acids, peptides, carbohydrates, steroids, and commercial polymers.


Assuntos
Aldeídos , Aminas , Aldeídos/química , Aminas/química , Álcoois , Compostos de Sulfidrila , Indicadores e Reagentes
19.
J Am Chem Soc ; 143(4): 1773-1778, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33476512

RESUMO

The design of structurally defined heteroleptic coordination cages is a challenging task, and only few examples are known to date. Here we describe a selection approach that allowed the identification of a novel hexanuclear Pd cage containing two types of dipyridyl ligands. A virtual combinatorial library of [PdnL2n](BF4)2n complexes was prepared by mixing six different dipyridyl ligands with substoichiometric amounts of [Pd(CH3CN)4](BF4)2. Analysis of the equilibrated reaction mixture revealed the preferential formation of a heteroleptic [Pd6L6L'6](BF4)12 assembly. The complex was prepared on a preparative scale by a targeted synthesis, and its structure was elucidated by single-crystal X-ray diffraction. It features an unprecedented trigonal-antiprismatic cage structure with two triangular Pd3L3 macrocycles bridged by six L' ligands. A related but significantly larger [Pd6L6L'6](BF4)12 cage was obtained by using metalloligands instead of organic dipyridyl ligands.

20.
Chemistry ; 27(36): 9439-9445, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33998736

RESUMO

Spherical assemblies of the type [Pdn L2n ]2n+ can be obtained from PdII salts and curved N-donor ligands, L. It is well established that the bent angle, α, of the ligand is a decisive factor in the self-assembly process, with larger angles leading to complexes with a higher nuclearity, n. Herein, we report heteroleptic coordination cages of the type [Pdn Ln L'n ]2n+ , for which a similar correlation between the ligand bent angle and the nuclearity is observed. Tetranuclear cages were obtained by combining [Pd(CH3 CN)4 ](BF4 )2 with 1,3-di(pyridin-3-yl)benzene and ligands featuring a bent angle of α=120°. The use of a dipyridyl ligand with α=149° led to the formation of a hexanuclear complex with a trigonal prismatic geometry; for linear ligands, octanuclear assemblies of the type [Pd8 L8 L'8 ]16+ were obtained. The predictable formation of heteroleptic PdII cages from 1,3-di(pyridin-3-yl)benzene and different dipyridyl ligands is evidence that there are entire classes of heteroleptic cage structures that are privileged from a thermodynamic point of view.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA