RESUMO
l-Kynurenine is an endogenous metabolite generated by the catabolic pathway of l-tryptophan and it could be a potential biomarker to test the efficacy of several checkpoint inhibitors that have already reached the clinical trials in the antitumor therapy. Thus, a molecularly imprinted polymer specific for the recognition of this metabolite was synthesized and used as innovative system in solid-phase extraction technique for the specific extraction and quantification of l-kynurenine in human urine. The off-line system was firstly tested on l-kynurenine standard solutions, allowing recoveries up to 97.7% (relative standard deviation = 2.2%) and then applied to fortified and deproteinated human urine samples, where a recovery of 84.1% (relative standard deviation = 3.1%) was obtained. The method was validated and it revealed a good linearity in the range of 0.157-20 µg/mL (r2 = 0.9992). The optimized procedure demonstrated a good feasibility on biological samples, allowing a ready quantification of l-kynurenine in the human urine, where the metabolite was found at a very low concentration (0.80 µg/mL). The extraction system developed could attract attention of pharmaceutical industries for l-kynurenine production as potential drug in the treatment of autoimmune disorders through its extraction and purification from biological matrixes.
Assuntos
Cinurenina/isolamento & purificação , Cinurenina/urina , Impressão Molecular , Extração em Fase Sólida , Adulto , Voluntários Saudáveis , Humanos , Cinurenina/química , Tamanho da PartículaRESUMO
An important challenge for scientific research is the production of artificial systems able to mimic the recognition mechanisms occurring at the molecular level in living systems. A valid contribution in this direction resulted from the development of molecular imprinting. In this work, a novel molecularly imprinted polymer composite membrane (MIM) was synthesized and employed for the selective detection in urine samples of 2-deoxyadenosine (2-dA), an important tumoral marker. By thermal polymerization, the 2-dA-MIM was cross-linked on the surface of a polyvinylidene-difluoride (PVDF) membrane. By characterization techniques, the linking of the imprinted polymer on the surface of the membrane was found. Batch-wise guest binding experiments confirmed the absorption capacity of the synthesized membrane towards the template molecule. Subsequently, a time-course of 2-dA retention on membrane was performed and the best minimum time (30 min) to bind the molecule was established. HPLC analysis was also performed to carry out a rapid detection of target molecule in urine sample with a recovery capacity of 85%. The experiments indicated that the MIM was highly selective and can be used for revealing the presence of 2-dA in urine samples.
Assuntos
Resinas Compostas/química , Desoxiadenosinas/urina , Membranas Artificiais , Impressão Molecular , Urinálise/métodos , Absorção Fisico-Química , Humanos , Polivinil/químicaRESUMO
Fmoc-3-nitrotyrosine (Fmoc-3-NT) molecularly imprinted polymers (MIPs) were synthesized to understand the influence of several functional monomers on the efficiency of the molecular imprinting process. Acidic, neutral and basic functional monomers, such as acrylic acid (AA), methacrylic acid (MAA), methacrylamide (MAM), 2-vinylpyridine (2-VP), 4-vinylpyridine (4-VP), have been used to synthesize five different polymers. In this study, the MIPs were tested in batch experiments by UV-visible spectroscopy in order to evaluate their binding properties. The MIP prepared with 2-VP exhibited the highest binding affinity for Fmoc-3NT, for which Scatchard analysis the highest association constant (2.49 × 10(4) M(-1)) was obtained. Furthermore, titration experiments of Fmoc-3NT into acetonitrile solutions of 2-VP revealed a stronger bond to the template, such that a total interaction is observed. Non-imprinted polymers as control were prepared and showed no binding affinities for Fmoc-3NT. The results are indicative of the importance of ionic bonds formed between the -OH residues of the template molecule and the pyridinyl groups of the polymer matrix. In conclusion, 2-VP assists to create a cavity which allows better access to the analytes.
Assuntos
Aminoácidos/química , Impressão Molecular , Polímeros/química , Acrilamidas/química , Acrilatos/química , Aminoácidos/síntese química , Aminoácidos/isolamento & purificação , Cinética , Metacrilatos/química , Piridinas/química , Tirosina/análogos & derivados , Tirosina/síntese química , Tirosina/química , Tirosina/isolamento & purificaçãoRESUMO
Molecular Imprinting Technology (MIT) is a technique to design artificial receptors with a predetermined selectivity and specificity for a given analyte, which can be used as ideal materials in various application fields. Molecularly Imprinted Polymers (MIPs), the polymeric matrices obtained using the imprinting technology, are robust molecular recognition elements able to mimic natural recognition entities, such as antibodies and biological receptors, useful to separate and analyze complicated samples such as biological fluids and environmental samples. The scope of this review is to provide a general overview on MIPs field discussing first general aspects in MIP preparation and then dealing with various application aspects. This review aims to outline the molecularly imprinted process and present a summary of principal application fields of molecularly imprinted polymers, focusing on chemical sensing, separation science, drug delivery and catalysis. Some significant aspects about preparation and application of the molecular imprinting polymers with examples taken from the recent literature will be discussed. Theoretical and experimental parameters for MIPs design in terms of the interaction between template and polymer functionalities will be considered and synthesis methods for the improvement of MIP recognition properties will also be presented.
Assuntos
Previsões , Impressão Molecular/métodos , Impressão Molecular/tendências , Polímeros/metabolismo , Modelos Moleculares , Estrutura Molecular , Reprodutibilidade dos TestesRESUMO
Herein, we described the synthesis of a novel ion-imprinted membrane for the detection of palladium(II) prepared through the glutaraldehyde crosslinking of chitosan with a 4-[(4-Hydroxy)phenylazo]benzenesulfonic acid ligand trapped into the membrane. The imprinting technology was used to improve adsorption capacity and adsorption selectivity, and was combined with some advantages of the developed membrane, such as low cost and ease of preparation, water-friendly synthesis, and high biocompatible chitosan material. The membranes were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectrometry (EDS). The results obtained showed a high swelling ratio with a maximum value of 16.4 (1640%) at pH 4 with a strong pH dependence. Batch rebinding experiments gave a maximum adsorption capacity of 101.6 mg of Pd(II) per gram of imprinted membrane. The Pd(II) adsorption behavior was well-described by a Langmuir model with a theoretical maximum adsorption capacity of 93.48 mg g-1, similar to the experimental one. Finally, a selectivity study versus Ag(I), Pb(II), and Fe(III) ions demonstrated a good selectivity of chitosan-imprinted membrane towards Pd(II).
RESUMO
A highly selective water compatible molecularly imprinted polymer (MIP) for 3-nitro-L-tyrosine (3NT), an oxidative stress marker associated with neurodegenerative disorders, was prepared and its use as solid-phase extraction (SPE) sorbent material was demonstrated. The MIP was prepared by bulk polymerization using methacrylic acid as functional monomer and acetonitrile as porogen with traces of acetic acid and trifluoroacetic acid. In order to evaluate its binding properties, the MIP was analyzed by batch rebinding experiments and subsequently used as SPE sorbent for the selective clean-up and pre-concentration of 3NT from standard solutions and spiked human urine samples. The results obtained from batch rebinding experiments showed the presence of two association constants corresponding to high-affinity (Ka 4.20×10(3) M(-1)) and low-affinity (Ka 0.79×10(3) M(-1)) binding sites. Standard mixture solution loaded on MIP-SPE cartridge gave a recovery of 95% for 3NT, while the other compounds were totally eluted during washing step. Percentage of recovery higher than 90%, with relative standard deviation of 2%, was also obtained when a maximum of 55 µg of 3NT is used in spiked urine sample and loaded into the cartridge. Validation of the analytical method for 3NT quantification in human urine gave 0.7 µg mL(-1) of limit of detection, a linear range of 2.5-55 µg mL(-1) with a relative standard deviation of 2%.
Assuntos
Materiais Biomiméticos , Técnicas Biossensoriais/instrumentação , Impressão Molecular/instrumentação , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/urina , Polímeros/química , Tirosina/análogos & derivados , Materiais Biocompatíveis/química , Biomarcadores/química , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tirosina/urina , Água/químicaRESUMO
A highly selective molecularly imprinted polymer (MIP) for 1-methyladenosine (1-MA), an urinary modified nucleoside used as cancer marker, was prepared and its use as solid-phase extraction (SPE) sorbent material was demonstrated. The MIP was prepared by a very simple procedure using methacrylic acid as functional monomer and a mixture acetonitrile/water (4/1, v/v) as porogen, overcoming in this way the problems usually related to the imprinting of biological polar compounds. The MIP was tested in batch experiments in order to evaluate its binding properties and then used as SPE sorbent for the selective clean-up and pre-concentration of 1-MA. The extraction protocol was successfully applied to the direct extraction of 1-MA from spiked human urine indicating that the MIP allowed 1-MA to be pre-concentrated while simultaneously interfering compounds were removed from the matrix.