Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Neurosci ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663429

RESUMO

The zebrafish visual system has become a paradigmatic preparation for behavioral and systems neuroscience. Around 40 types of retinal ganglion cells (RGCs) serve as matched filters for stimulus features, including light, optic flow, prey, and objects on a collision course. RGCs distribute their signals via axon collaterals to 13 retinorecipient areas in forebrain and midbrain. The major visuomotor hub, the optic tectum, harbors nine RGC input layers that combine information on multiple features. The retinotopic map in the tectum is locally adapted to visual scene statistics and visual subfield-specific behavioral demands. Tectal projections to premotor centers are topographically organized according to behavioral commands. The known connectivity in more than 20 processing streams allows us to dissect the cellular basis of elementary perceptual and cognitive functions. Visually evoked responses, such as prey capture or loom avoidance, are controlled by dedicated multistation pathways that-at least in the larva-resemble labeled lines. This architecture serves the neuronal code's purpose of driving adaptive behavior.

2.
Brain ; 146(11): 4766-4783, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37437211

RESUMO

KPTN-related disorder is an autosomal recessive disorder associated with germline variants in KPTN (previously known as kaptin), a component of the mTOR regulatory complex KICSTOR. To gain further insights into the pathogenesis of KPTN-related disorder, we analysed mouse knockout and human stem cell KPTN loss-of-function models. Kptn -/- mice display many of the key KPTN-related disorder phenotypes, including brain overgrowth, behavioural abnormalities, and cognitive deficits. By assessment of affected individuals, we have identified widespread cognitive deficits (n = 6) and postnatal onset of brain overgrowth (n = 19). By analysing head size data from their parents (n = 24), we have identified a previously unrecognized KPTN dosage-sensitivity, resulting in increased head circumference in heterozygous carriers of pathogenic KPTN variants. Molecular and structural analysis of Kptn-/- mice revealed pathological changes, including differences in brain size, shape and cell numbers primarily due to abnormal postnatal brain development. Both the mouse and differentiated induced pluripotent stem cell models of the disorder display transcriptional and biochemical evidence for altered mTOR pathway signalling, supporting the role of KPTN in regulating mTORC1. By treatment in our KPTN mouse model, we found that the increased mTOR signalling downstream of KPTN is rapamycin sensitive, highlighting possible therapeutic avenues with currently available mTOR inhibitors. These findings place KPTN-related disorder in the broader group of mTORC1-related disorders affecting brain structure, cognitive function and network integrity.


Assuntos
Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Animais , Camundongos , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Encéfalo/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Cognição , Proteínas dos Microfilamentos/genética
3.
PLoS Genet ; 17(9): e1009803, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34570759

RESUMO

SNIP1 (Smad nuclear interacting protein 1) is a widely expressed transcriptional suppressor of the TGF-ß signal-transduction pathway which plays a key role in human spliceosome function. Here, we describe extensive genetic studies and clinical findings of a complex inherited neurodevelopmental disorder in 35 individuals associated with a SNIP1 NM_024700.4:c.1097A>G, p.(Glu366Gly) variant, present at high frequency in the Amish community. The cardinal clinical features of the condition include hypotonia, global developmental delay, intellectual disability, seizures, and a characteristic craniofacial appearance. Our gene transcript studies in affected individuals define altered gene expression profiles of a number of molecules with well-defined neurodevelopmental and neuropathological roles, potentially explaining clinical outcomes. Together these data confirm this SNIP1 gene variant as a cause of an autosomal recessive complex neurodevelopmental disorder and provide important insight into the molecular roles of SNIP1, which likely explain the cardinal clinical outcomes in affected individuals, defining potential therapeutic avenues for future research.


Assuntos
Alelos , Amish/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Ligação a RNA/genética , Expressão Gênica/genética , Genes Recessivos , Humanos
4.
Opt Lett ; 48(12): 3155-3158, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37319050

RESUMO

We present a spectrally selective, passively cooled mid-wave infrared bolometric absorber engineered to spatially and spectrally decouple infrared absorption and thermal emission. The structure leverages an antenna-coupled metal-insulator-metal resonance for mid-wave infrared normal incidence photon absorption and a long-wave infrared optical phonon absorption feature, aligned closer to peak room temperature thermal emission. The phonon-mediated resonant absorption enables a strong long-wave infrared thermal emission feature limited to grazing angles, leaving the mid-wave infrared absorption feature undisturbed. The two independently controlled absorption/emission phenomena demonstrate decoupling of the photon detection mechanism from radiative cooling and offer a new design approach enabling ultra-thin, passively cooled mid-wave infrared bolometers.

5.
Proc Natl Acad Sci U S A ; 117(43): 26822-26832, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33033227

RESUMO

The mammary epithelium is indispensable for the continued survival of more than 5,000 mammalian species. For some, the volume of milk ejected in a single day exceeds their entire blood volume. Here, we unveil the spatiotemporal properties of physiological signals that orchestrate the ejection of milk from alveolar units and its passage along the mammary ductal network. Using quantitative, multidimensional imaging of mammary cell ensembles from GCaMP6 transgenic mice, we reveal how stimulus evoked Ca2+ oscillations couple to contractions in basal epithelial cells. Moreover, we show that Ca2+-dependent contractions generate the requisite force to physically deform the innermost layer of luminal cells, compelling them to discharge the fluid that they produced and housed. Through the collective action of thousands of these biological positive-displacement pumps, each linked to a contractile ductal network, milk begins its passage toward the dependent neonate, seconds after the command.


Assuntos
Sinalização do Cálcio , Glândulas Mamárias Animais/fisiologia , Ejeção Láctea , Animais , Células Epiteliais/fisiologia , Humanos , Microscopia Intravital , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/diagnóstico por imagem , Glândulas Mamárias Humanas/metabolismo , Camundongos , Camundongos Transgênicos , Cadeias Leves de Miosina/metabolismo
6.
Genet Med ; 24(11): 2249-2261, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36074124

RESUMO

PURPOSE: The clinical spectrum of motile ciliopathies includes laterality defects, hydrocephalus, and infertility as well as primary ciliary dyskinesia when impaired mucociliary clearance results in otosinopulmonary disease. Importantly, approximately 30% of patients with primary ciliary dyskinesia lack a genetic diagnosis. METHODS: Clinical, genomic, biochemical, and functional studies were performed alongside in vivo modeling of DAW1 variants. RESULTS: In this study, we identified biallelic DAW1 variants associated with laterality defects and respiratory symptoms compatible with motile cilia dysfunction. In early mouse embryos, we showed that Daw1 expression is limited to distal, motile ciliated cells of the node, consistent with a role in left-right patterning. daw1 mutant zebrafish exhibited reduced cilia motility and left-right patterning defects, including cardiac looping abnormalities. Importantly, these defects were rescued by wild-type, but not mutant daw1, gene expression. In addition, pathogenic DAW1 missense variants displayed reduced protein stability, whereas DAW1 loss-of-function was associated with distal type 2 outer dynein arm assembly defects involving axonemal respiratory cilia proteins, explaining the reduced cilia-induced fluid flow in particle tracking velocimetry experiments. CONCLUSION: Our data define biallelic DAW1 variants as a cause of human motile ciliopathy and determine that the disease mechanism involves motile cilia dysfunction, explaining the ciliary beating defects observed in affected individuals.


Assuntos
Transtornos da Motilidade Ciliar , Ciliopatias , Proteínas do Citoesqueleto , Animais , Humanos , Camundongos , Axonema/genética , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Transtornos da Motilidade Ciliar/patologia , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Proteínas do Citoesqueleto/genética , Mutação , Proteínas/genética , Peixe-Zebra/genética
7.
Nanotechnology ; 33(37)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35749124

RESUMO

Thin film platinum resistive thermometers are conventionally applied for resistance thermometry techniques due to their stability and proven measurement accuracy. Depending upon the required thermometer thickness and temperature measurement, however, performance benefits can be realized through the application of alternative nanometallic thin films. Herein, a comparative experimental analysis is provided on the performance of nanometallic thin film thermometers most relevant to microelectronics and thermal sensing applications: Al, Au, Cu, and Pt. Sensitivity is assessed through the temperature coefficient of resistance, measured over a range of 10-300 K for thicknesses nominally spanning 25-200 nm. The interplay of electron scattering sources, which give rise to the temperature-dependent TCR properties for each metal, are analyzed in the framework of a Mayadas-Shatzkes based model. Despite the prevalence of evaporated Pt thin film thermometers, Au and Cu films fabricated in a similar manner may provide enhanced sensitivity depending upon thickness. These results may serve as a guide as the movement toward smaller measurement platforms necessitates the use of smaller, thinner metallic resistance thermometers.

8.
Brain ; 144(12): 3597-3610, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34415310

RESUMO

Phosphatidylinositol 4-kinase IIIα (PI4KIIIα/PI4KA/OMIM:600286) is a lipid kinase generating phosphatidylinositol 4-phosphate (PI4P), a membrane phospholipid with critical roles in the physiology of multiple cell types. PI4KIIIα's role in PI4P generation requires its assembly into a heterotetrameric complex with EFR3, TTC7 and FAM126. Sequence alterations in two of these molecular partners, TTC7 (encoded by TTC7A or TCC7B) and FAM126, have been associated with a heterogeneous group of either neurological (FAM126A) or intestinal and immunological (TTC7A) conditions. Here we show that biallelic PI4KA sequence alterations in humans are associated with neurological disease, in particular hypomyelinating leukodystrophy. In addition, affected individuals may present with inflammatory bowel disease, multiple intestinal atresia and combined immunodeficiency. Our cellular, biochemical and structural modelling studies indicate that PI4KA-associated phenotypical outcomes probably stem from impairment of PI4KIIIα-TTC7-FAM126's organ-specific functions, due to defective catalytic activity or altered intra-complex functional interactions. Together, these data define PI4KA gene alteration as a cause of a variable phenotypical spectrum and provide fundamental new insight into the combinatorial biology of the PI4KIIIα-FAM126-TTC7-EFR3 molecular complex.


Assuntos
Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Atresia Intestinal/genética , Antígenos de Histocompatibilidade Menor/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Doenças da Imunodeficiência Primária/genética , Feminino , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único
9.
Nano Lett ; 21(9): 3935-3940, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33886340

RESUMO

Amorphous solids are traditionally assumed to set the lower bound to the vibrational thermal conductivity of a material due to the high degree of structural disorder. Here, were demonstrate the ability to increase the thermal conductivity of amorphous solids through ion irradiation, in turn, altering the bonding network configuration. We report on the thermal conductivity of hydrogenated amorphous carbon implanted with C+ ions spanning fluences of 3 × 1014-8.6 × 1014 cm-2 and energies of 10-20 keV. Time-domain thermoreflectance measurements of the films' thermal conductivities reveal significant enhancement, up to a factor of 3, depending upon the preirradiation composition. Films with higher initial hydrogen content provide the greatest increase, which is complemented by an increased stiffening and densification from the irradiation process. This enhancement in vibrational transport is unique when contrasted to crystalline materials, for which ion implantation is known to produce structural degradation and significantly reduced thermal conductivities.

10.
J Neurosci ; 40(21): 4130-4144, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32277044

RESUMO

Information about water flow, detected by lateral line organs, is critical to the behavior and survival of fish and amphibians. While certain aspects of water flow processing have been revealed through electrophysiology, we lack a comprehensive description of the neurons that respond to water flow and the network that they form. Here, we use brain-wide calcium imaging in combination with microfluidic stimulation to map out, at cellular resolution, neuronal responses involved in perceiving and processing water flow information in larval zebrafish. We find a diverse array of neurons responding to head-to-tail (h-t) flow, tail-to-head (t-h) flow, or both. Early in this pathway, in the lateral line ganglia, neurons respond almost exclusively to the simple presence of h-t or t-h flow, but later processing includes neurons responding specifically to flow onset, representing the accumulated displacement of flow during a stimulus, or encoding the speed of the flow. The neurons reporting on these more nuanced details are located across numerous brain regions, including some not previously implicated in water flow processing. A graph theory-based analysis of the brain-wide water flow network shows that a majority of this processing is dedicated to h-t flow detection, and this is reinforced by our finding that details like flow velocity and the total accumulated flow are only encoded for the h-t direction. The results represent the first brain-wide description of processing for this important modality, and provide a departure point for more detailed studies of the flow of information through this network.SIGNIFICANCE STATEMENT In aquatic animals, the lateral line is important for detecting water flow stimuli, but the brain networks that interpret this information remain mysterious. Here, we have imaged the activity of individual neurons across the entire brains of larval zebrafish, revealing all response types and their brain locations as water flow processing occurs. We find neurons that respond to the simple presence of water flow, and others attuned to the direction, speed, and duration of flow, or the accumulated displacement of water that has passed during the stimulus. With this information, we modeled the underlying network, describing a system that is nuanced in its processing of water flow simulating head-to-tail motion but rudimentary in processing flow in the tail-to-head direction.


Assuntos
Encéfalo/fisiologia , Sistema da Linha Lateral/fisiologia , Percepção de Movimento/fisiologia , Neurônios/fisiologia , Animais , Microfluídica , Água , Peixe-Zebra
11.
Nature ; 577(7789): 175-176, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31911680
12.
BMC Biol ; 18(1): 125, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938458

RESUMO

BACKGROUND: Loss or disrupted expression of the FMR1 gene causes fragile X syndrome (FXS), the most common monogenetic form of autism in humans. Although disruptions in sensory processing are core traits of FXS and autism, the neural underpinnings of these phenotypes are poorly understood. Using calcium imaging to record from the entire brain at cellular resolution, we investigated neuronal responses to visual and auditory stimuli in larval zebrafish, using fmr1 mutants to model FXS. The purpose of this study was to model the alterations of sensory networks, brain-wide and at cellular resolution, that underlie the sensory aspects of FXS and autism. RESULTS: Combining functional analyses with the neurons' anatomical positions, we found that fmr1-/- animals have normal responses to visual motion. However, there were several alterations in the auditory processing of fmr1-/- animals. Auditory responses were more plentiful in hindbrain structures and in the thalamus. The thalamus, torus semicircularis, and tegmentum had clusters of neurons that responded more strongly to auditory stimuli in fmr1-/- animals. Functional connectivity networks showed more inter-regional connectivity at lower sound intensities (a - 3 to - 6 dB shift) in fmr1-/- larvae compared to wild type. Finally, the decoding capacities of specific components of the ascending auditory pathway were altered: the octavolateralis nucleus within the hindbrain had significantly stronger decoding of auditory amplitude while the telencephalon had weaker decoding in fmr1-/- mutants. CONCLUSIONS: We demonstrated that fmr1-/- larvae are hypersensitive to sound, with a 3-6 dB shift in sensitivity, and identified four sub-cortical brain regions with more plentiful responses and/or greater response strengths to auditory stimuli. We also constructed an experimentally supported model of how auditory information may be processed brain-wide in fmr1-/- larvae. Our model suggests that the early ascending auditory pathway transmits more auditory information, with less filtering and modulation, in this model of FXS.


Assuntos
Transtorno Autístico/fisiopatologia , Encéfalo/fisiopatologia , Síndrome do Cromossomo X Frágil/fisiopatologia , Peixe-Zebra , Animais , Transtorno Autístico/genética , Modelos Animais de Doenças , Síndrome do Cromossomo X Frágil/genética
13.
J Neurosci ; 39(26): 5095-5114, 2019 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-31023836

RESUMO

The spatial and temporal regulation of calcium signaling in neuronal growth cones is essential for axon guidance. In growth cones, the endoplasmic reticulum (ER) is a significant source of calcium signals. However, it is not clear whether the ER is remodeled during motile events to localize calcium signals in steering growth cones. The expression of the ER-calcium sensor, stromal interacting molecule 1 (STIM1) is necessary for growth cone steering toward the calcium-dependent guidance cue BDNF, with STIM1 functioning to sustain calcium signals through store-operated calcium entry. However, STIM1 is also required for growth cone steering away from semaphorin-3a, a guidance cue that does not activate ER-calcium release, suggesting multiple functions of STIM1 within growth cones (Mitchell et al., 2012). STIM1 also interacts with microtubule plus-end binding proteins EB1/EB3 (Grigoriev et al., 2008). Here, we show that STIM1 associates with EB1/EB3 in growth cones and that STIM1 expression is critical for microtubule recruitment and subsequent ER remodeling to the motile side of steering growth cones. Furthermore, we extend our data in vivo, demonstrating that zSTIM1 is required for axon guidance in actively navigating zebrafish motor neurons, regulating calcium signaling and filopodial formation. These data demonstrate that, in response to multiple guidance cues, STIM1 couples microtubule organization and ER-derived calcium signals, thereby providing a mechanism where STIM1-mediated ER remodeling, particularly in filopodia, regulates spatiotemporal calcium signals during axon guidance.SIGNIFICANCE STATEMENT Defects in both axon guidance and endoplasmic reticulum (ER) function are implicated in a range of developmental disorders. During neuronal circuit development, the spatial localization of calcium signals controls the growth cone cytoskeleton to direct motility. We demonstrate a novel role for stromal interacting molecule 1 (STIM1) in regulating microtubule and subsequent ER remodeling in navigating growth cones. We show that STIM1, an activator of store-operated calcium entry, regulates the dynamics of microtubule-binding proteins EB1/EB3, coupling ER to microtubules, within filopodia, thereby steering growth cones. The STIM1-microtubule-ER interaction provides a new model for spatial localization of calcium signals in navigating growth cones in the nascent nervous system.


Assuntos
Orientação de Axônios/fisiologia , Citoesqueleto/metabolismo , Retículo Endoplasmático/metabolismo , Cones de Crescimento/metabolismo , Microtúbulos/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Cálcio/metabolismo , Citoesqueleto/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/genética , Neurônios Motores/metabolismo , Pseudópodes/metabolismo , Ratos , Células Receptoras Sensoriais/metabolismo , Molécula 1 de Interação Estromal/genética , Peixe-Zebra
14.
J Clin Immunol ; 40(2): 321-328, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31903518

RESUMO

Cartilage-hair hypoplasia (CHH) is an autosomal recessive, short limb skeletal dysplasia with a variable immunologic phenotype. The spectrum of immune function ranges from clinically normal to severe combined immunodeficiency (SCID). Multiple studies have shown that abnormal immune parameters may not predict severe outcomes. Newborn screening (NBS) using T cell receptor excision circle (TREC) assay can now effectively identify infants with severe T cell deficiency who are at risk for SCID. NBS has allowed for cost-effective identification of patients with SCID and improved outcomes with hematopoietic stem cell transplant (HSCT). Ohio reports two abnormal TREC results: decreased and absent TREC. This study evaluated the laboratory and clinical differences in eight Amish patients with CHH with an abnormal TREC result on the NBS. There were four patients with absent TREC and four patients with decreased TREC. The absent TREC patients had lower CD3, CD4, naïve CD4, CD8 cells, and phytohemagglutinin (PHA)-induced lymphocyte proliferation. Three patients with absent TREC were diagnosed with SCID and two underwent successful HSCT. Patients with absent TREC experienced more CHH-related morbidity including anemia requiring transfusion, Hirschsprung's disease, and failure to thrive. No patients with decreased TREC required HSCT. Our study indicates that CHH patients with absent TREC tend to have more severe immunological and clinical phenotype than patients with decreased TREC. Confirmation of these trends in a larger group would guide providers and parents in a timely referral for HSCT, or cost-effective surveillance monitoring of children with a life-threatening illness.


Assuntos
Amish , Patologia Molecular/métodos , Receptores de Antígenos de Linfócitos T/genética , Imunodeficiência Combinada Severa/diagnóstico , Linfócitos T/imunologia , Síndromes de Tricotiodistrofia/diagnóstico , Células Cultivadas , Pré-Escolar , Estudos de Coortes , Seguimentos , Transplante de Células-Tronco Hematopoéticas , Humanos , Lactente , Recém-Nascido , Ativação Linfocitária , Triagem Neonatal , Prognóstico , Imunodeficiência Combinada Severa/genética , Resultado do Tratamento , Síndromes de Tricotiodistrofia/genética
15.
Mol Genet Metab ; 126(4): 475-488, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30691927

RESUMO

GM3 synthase, encoded by ST3GAL5, initiates synthesis of all downstream cerebral gangliosides. Here, we present biochemical, functional, and natural history data from 50 individuals homozygous for a pathogenic ST3GAL5 c.862C>T founder allele (median age 8.1, range 0.7-30.5 years). GM3 and its derivatives were undetectable in plasma. Weight and head circumference were normal at birth and mean Apgar scores were 7.7 ±â€¯2.0 (1 min) and 8.9 ±â€¯0.5 (5 min). Somatic growth failure, progressive microcephaly, global developmental delay, visual inattentiveness, and dyskinetic movements developed within a few months of life. Infantile-onset epileptic encephalopathy was characterized by a slow, disorganized, high-voltage background, poor state transitions, absent posterior rhythm, and spike trains from multiple independent cortical foci; >90% of electrographic seizures were clinically silent. Hearing loss affected cochlea and central auditory pathways and 76% of children tested failed the newborn hearing screen. Development stagnated early in life; only 13 (26%) patients sat independently (median age 30 months), three (6%) learned to crawl, and none achieved reciprocal communication. Incessant irritability, often accompanied by insomnia, began during infancy and contributed to high parental stress. Despite catastrophic neurological dysfunction, neuroimaging showed only subtle or no destructive changes into late childhood and hospitalizations were surprisingly rare (0.2 per patient per year). Median survival was 23.5 years. Our observations corroborate findings from transgenic mice which indicate that gangliosides might have a limited role in embryonic neurodevelopment but become vital for postnatal brain growth and function. These results have critical implications for the design and implementation of ganglioside restitution therapies.


Assuntos
Epilepsia/tratamento farmacológico , Epilepsia/genética , Gangliosídeos/fisiologia , Sialiltransferases/deficiência , Adolescente , Adulto , Alelos , Índice de Apgar , Criança , Pré-Escolar , Epilepsia/complicações , Feminino , Glicoesfingolipídeos/sangue , Homozigoto , Humanos , Lactente , Masculino , Microcefalia , Estudos Retrospectivos , Convulsões , Sialiltransferases/sangue , Sialiltransferases/genética , Estados Unidos , Adulto Jovem
16.
J Neurosci ; 36(19): 5385-96, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27170134

RESUMO

UNLABELLED: Topographic maps are common throughout the nervous system, yet their functional role is still unclear. In particular, whether they are necessary for decoding sensory stimuli is unknown. Here we examined this question by recording population activity at the cellular level from the larval zebrafish tectum in response to visual stimuli at three closely spaced locations in the visual field. Due to map imprecision, nearby stimulus locations produced intermingled tectal responses, and decoding based on map topography yielded an accuracy of only 64%. In contrast, maximum likelihood decoding of stimulus location based on the statistics of the evoked activity, while ignoring any information about the locations of neurons in the map, yielded an accuracy close to 100%. A simple computational model of the zebrafish visual system reproduced these results. Although topography is a useful initial decoding strategy, we suggest it may be replaced by better methods following visual experience. SIGNIFICANCE STATEMENT: A very common feature of brain wiring is that neighboring points on a sensory surface (eg, the retina) are connected to neighboring points in the brain. It is often assumed that this "topography" of wiring is essential for decoding sensory stimuli. However, here we show in the developing zebrafish that topographic decoding performs very poorly compared with methods that do not rely on topography. This suggests that, although wiring topography could provide a starting point for decoding at a very early stage in development, it may be replaced by more accurate methods as the animal gains experience of the world.


Assuntos
Mapeamento Encefálico/métodos , Percepção Espacial , Colículos Superiores/fisiologia , Imagens com Corantes Sensíveis à Voltagem/métodos , Animais , Mapeamento Encefálico/normas , Potenciais Evocados Visuais , Percepção Visual , Imagens com Corantes Sensíveis à Voltagem/normas , Peixe-Zebra
17.
PLoS Comput Biol ; 12(3): e1004813, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26998842

RESUMO

Branching is an important mechanism by which axons navigate to their targets during neural development. For instance, in the developing zebrafish retinotectal system, selective branching plays a critical role during both initial pathfinding and subsequent arborisation once the target zone has been reached. Here we show how quantitative methods can help extract new information from time-lapse imaging about the nature of the underlying branch dynamics. First, we introduce Dynamic Time Warping to this domain as a method for automatically matching branches between frames, replacing the effort required for manual matching. Second, we model branch dynamics as a birth-death process, i.e. a special case of a continuous-time Markov process. This reveals that the birth rate for branches from zebrafish retinotectal axons, as they navigate across the tectum, increased over time. We observed no significant change in the death rate for branches over this time period. However, blocking neuronal activity with TTX slightly increased the death rate, without a detectable change in the birth rate. Third, we show how the extraction of these rates allows computational simulations of branch dynamics whose statistics closely match the data. Together these results reveal new aspects of the biology of retinotectal pathfinding, and introduce computational techniques which are applicable to the study of axon branching more generally.


Assuntos
Modelos Neurológicos , Neurogênese/fisiologia , Colículos Superiores/citologia , Colículos Superiores/crescimento & desenvolvimento , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/fisiologia , Animais , Simulação por Computador , Conectoma/métodos , Interpretação de Imagem Assistida por Computador , Modelos Anatômicos , Imagem com Lapso de Tempo/métodos
18.
BMC Biol ; 13: 10, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25729914

RESUMO

BACKGROUND: Normal brain function depends on the development of appropriate patterns of neural connections. A critical role in guiding axons to their targets during neural development is played by neuronal growth cones. These have a complex and rapidly changing morphology; however, a quantitative understanding of this morphology, its dynamics and how these are related to growth cone movement, is lacking. RESULTS: Here we use eigenshape analysis (principal components analysis in shape space) to uncover the set of five to six basic shape modes that capture the most variance in growth cone form. By analysing how the projections of growth cones onto these principal modes evolve in time, we found that growth cone shape oscillates with a mean period of 30 min. The variability of oscillation periods and strengths between different growth cones was correlated with their forward movement, such that growth cones with strong, fast shape oscillations tended to extend faster. A simple computational model of growth cone shape dynamics based on dynamic microtubule instability was able to reproduce quantitatively both the mean and variance of oscillation periods seen experimentally, suggesting that the principal driver of growth cone shape oscillations may be intrinsic periodicity in cytoskeletal rearrangements. CONCLUSIONS: Intrinsically driven shape oscillations are an important component of growth cone shape dynamics. More generally, eigenshape analysis has the potential to provide new quantitative information about differences in growth cone behaviour in different conditions.


Assuntos
Cones de Crescimento/metabolismo , Animais , Quimiotaxia/efeitos dos fármacos , Bases de Dados como Assunto , Vidro , Cones de Crescimento/efeitos dos fármacos , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Modelos Biológicos , Movimento/efeitos dos fármacos , Fator de Crescimento Neural/farmacologia , Periodicidade , Ratos Wistar , Análise de Regressão , Reprodutibilidade dos Testes , Fatores de Tempo , Peixe-Zebra
19.
Nature ; 461(7262): 407-10, 2009 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-19759620

RESUMO

Locomotion relies on neural networks called central pattern generators (CPGs) that generate periodic motor commands for rhythmic movements. In vertebrates, the excitatory synaptic drive for inducing the spinal CPG can originate from either supraspinal glutamatergic inputs or from within the spinal cord. Here we identify a spinal input to the CPG that drives spontaneous locomotion using a combination of intersectional gene expression and optogenetics in zebrafish larvae. The photo-stimulation of one specific cell type was sufficient to induce a symmetrical tail beating sequence that mimics spontaneous slow forward swimming. This neuron is the Kolmer-Agduhr cell, which extends cilia into the central cerebrospinal-fluid-containing canal of the spinal cord and has an ipsilateral ascending axon that terminates in a series of consecutive segments. Genetically silencing Kolmer-Agduhr cells reduced the frequency of spontaneous free swimming, indicating that activity of Kolmer-Agduhr cells provides necessary tone for spontaneous forward swimming. Kolmer-Agduhr cells have been known for over 75 years, but their function has been mysterious. Our results reveal that during early development in zebrafish these cells provide a positive drive to the spinal CPG for spontaneous locomotion.


Assuntos
Luz , Locomoção/fisiologia , Medula Espinal/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Cílios/fisiologia , Feminino , Larva/genética , Larva/fisiologia , Larva/efeitos da radiação , Locomoção/genética , Locomoção/efeitos da radiação , Masculino , Modelos Neurológicos , Neurônios/fisiologia , Neurônios/efeitos da radiação , Medula Espinal/citologia , Medula Espinal/efeitos da radiação , Natação/fisiologia , Cauda/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento
20.
J Cell Biochem ; 115(7): 1243-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24415158

RESUMO

Osteoactivin (OA), also known as glycoprotein nmb (gpnmb) plays an important role in the regulation of osteoblast differentiation and function. OA induced osteoblast differentiation and function in vitro by stimulating alkaline phosphatase (ALP) activity, osteocalcin production, nodule formation, and matrix mineralization. Recent studies reported a role for OA in cell adhesion and integrin binding. In this study, we demonstrate that recombinant osteoactivin (rOA) as a matricellular protein stimulated adhesion, spreading and differentiation of MC3T3-E1 osteoblast-like cells through binding to αv ß1 integrin and heparan sulfated proteoglycans (HSPGs). MC3T3-E1 cell adhesion to rOA was blocked by neutralizing anti-OA or anti-αv and ß1 integrin antibodies. rOA stimulated-osteoblast adhesion was also inhibited by soluble heparin and sodium chlorate. Interestingly, rOA stimulated-osteoblast adhesion promoted an increase in FAK and ERK activation, resulting in the formation of focal adhesions, cell spreading and enhanced actin cytoskeleton organization. In addition, differentiation of primary osteoblasts was augmented on rOA coated-wells marked by increased alkaline phosphatase staining and activity. Taken together, these data implicate OA as a matricellular protein that stimulates osteoblast adhesion through binding to αv ß1 integrin and cell surface HSPGs, resulting in increased cell spreading, actin reorganization, and osteoblast differentiation with emphasis on the positive role of OA in osteogenesis.


Assuntos
Proteínas do Olho/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Glicoproteínas de Membrana/metabolismo , Osteoblastos/fisiologia , Receptores de Vitronectina/metabolismo , Células 3T3 , Citoesqueleto de Actina/fisiologia , Fosfatase Alcalina/biossíntese , Animais , Anticorpos/imunologia , Adesão Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Cloratos/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , Proteínas do Olho/genética , Proteínas do Olho/imunologia , Quinase 1 de Adesão Focal/biossíntese , Adesões Focais , Heparina/farmacologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese/fisiologia , Ligação Proteica , Ratos , Receptores de Vitronectina/imunologia , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA