Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.842
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 178(5): 1057-1071.e11, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442400

RESUMO

The Zika epidemic in the Americas has challenged surveillance and control. As the epidemic appears to be waning, it is unclear whether transmission is still ongoing, which is exacerbated by discrepancies in reporting. To uncover locations with lingering outbreaks, we investigated travel-associated Zika cases to identify transmission not captured by reporting. We uncovered an unreported outbreak in Cuba during 2017, a year after peak transmission in neighboring islands. By sequencing Zika virus, we show that the establishment of the virus was delayed by a year and that the ensuing outbreak was sparked by long-lived lineages of Zika virus from other Caribbean islands. Our data suggest that, although mosquito control in Cuba may initially have been effective at mitigating Zika virus transmission, such measures need to be maintained to be effective. Our study highlights how Zika virus may still be "silently" spreading and provides a framework for understanding outbreak dynamics. VIDEO ABSTRACT.


Assuntos
Epidemias , Genômica/métodos , Infecção por Zika virus/epidemiologia , Aedes/virologia , Animais , Cuba/epidemiologia , Humanos , Incidência , Controle de Mosquitos , Filogenia , RNA Viral/química , RNA Viral/metabolismo , Análise de Sequência de RNA , Viagem , Índias Ocidentais/epidemiologia , Zika virus/classificação , Zika virus/genética , Zika virus/isolamento & purificação , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
2.
Cell ; 172(4): 683-695.e15, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29425490

RESUMO

Fast-spiking interneurons (FSIs) are a prominent class of forebrain GABAergic cells implicated in two seemingly independent network functions: gain control and network plasticity. Little is known, however, about how these roles interact. Here, we use a combination of cell-type-specific ablation, optogenetics, electrophysiology, imaging, and behavior to describe a unified mechanism by which striatal FSIs control burst firing, calcium influx, and synaptic plasticity in neighboring medium spiny projection neurons (MSNs). In vivo silencing of FSIs increased bursting, calcium transients, and AMPA/NMDA ratios in MSNs. In a motor sequence task, FSI silencing increased the frequency of calcium transients but reduced the specificity with which transients aligned to individual task events. Consistent with this, ablation of FSIs disrupted the acquisition of striatum-dependent egocentric learning strategies. Together, our data support a model in which feedforward inhibition from FSIs temporally restricts MSN bursting and calcium-dependent synaptic plasticity to facilitate striatum-dependent sequence learning.


Assuntos
Sinalização do Cálcio/fisiologia , Interneurônios/metabolismo , Aprendizagem/fisiologia , Rede Nervosa/metabolismo , Plasticidade Neuronal/fisiologia , Animais , Interneurônios/citologia , Camundongos , Camundongos Transgênicos , N-Metilaspartato/metabolismo , Rede Nervosa/citologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/metabolismo
3.
Cell ; 174(2): 481-496.e19, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30007419

RESUMO

Dopamine (DA) is a central monoamine neurotransmitter involved in many physiological and pathological processes. A longstanding yet largely unmet goal is to measure DA changes reliably and specifically with high spatiotemporal precision, particularly in animals executing complex behaviors. Here, we report the development of genetically encoded GPCR-activation-based-DA (GRABDA) sensors that enable these measurements. In response to extracellular DA, GRABDA sensors exhibit large fluorescence increases (ΔF/F0 ∼90%) with subcellular resolution, subsecond kinetics, nanomolar to submicromolar affinities, and excellent molecular specificity. GRABDA sensors can resolve a single-electrical-stimulus-evoked DA release in mouse brain slices and detect endogenous DA release in living flies, fish, and mice. In freely behaving mice, GRABDA sensors readily report optogenetically elicited nigrostriatal DA release and depict dynamic mesoaccumbens DA signaling during Pavlovian conditioning or during sexual behaviors. Thus, GRABDA sensors enable spatiotemporally precise measurements of DA dynamics in a variety of model organisms while exhibiting complex behaviors.


Assuntos
Dopamina/análise , Drosophila/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados/genética , Animais Geneticamente Modificados/metabolismo , Comportamento Animal , Dopamina/metabolismo , Feminino , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Neurônios/citologia , Neurônios/metabolismo , Optogenética/métodos , Receptores Acoplados a Proteínas G/genética , Canais de Cátion TRPV/genética , Proteínas de Peixe-Zebra/genética
4.
Cell ; 149(5): 1112-24, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22632974

RESUMO

Activity-dependent gene expression triggered by Ca(2+) entry into neurons is critical for learning and memory, but whether specific sources of Ca(2+) act distinctly or merely supply Ca(2+) to a common pool remains uncertain. Here, we report that both signaling modes coexist and pertain to Ca(V)1 and Ca(V)2 channels, respectively, coupling membrane depolarization to CREB phosphorylation and gene expression. Ca(V)1 channels are advantaged in their voltage-dependent gating and use nanodomain Ca(2+) to drive local CaMKII aggregation and trigger communication with the nucleus. In contrast, Ca(V)2 channels must elevate [Ca(2+)](i) microns away and promote CaMKII aggregation at Ca(V)1 channels. Consequently, Ca(V)2 channels are ~10-fold less effective in signaling to the nucleus than are Ca(V)1 channels for the same bulk [Ca(2+)](i) increase. Furthermore, Ca(V)2-mediated Ca(2+) rises are preferentially curbed by uptake into the endoplasmic reticulum and mitochondria. This source-biased buffering limits the spatial spread of Ca(2+), further attenuating Ca(V)2-mediated gene expression.


Assuntos
Proteína de Ligação a CREB/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo N/metabolismo , Sinalização do Cálcio , Hipocampo/metabolismo , Animais , Cálcio/metabolismo , Núcleo Celular/metabolismo , Expressão Gênica , Hipocampo/citologia , Mitocôndrias/metabolismo , Ratos , Ratos Sprague-Dawley
5.
Mol Cell ; 75(1): 184-199.e10, 2019 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-31076284

RESUMO

The comprehensive but specific identification of RNA-binding proteins as well as the discovery of RNA-associated protein functions remain major challenges in RNA biology. Here we adapt the concept of RNA dependence, defining a protein as RNA dependent when its interactome depends on RNA. We converted this concept into a proteome-wide, unbiased, and enrichment-free screen called R-DeeP (RNA-dependent proteins), based on density gradient ultracentrifugation. Quantitative mass spectrometry identified 1,784 RNA-dependent proteins, including 537 lacking known links to RNA. Exploiting the quantitative nature of R-DeeP, proteins were classified as not, partially, or completely RNA dependent. R-DeeP identified the transcription factor CTCF as completely RNA dependent, and we uncovered that RNA is required for the CTCF-chromatin association. Additionally, R-DeeP allows reconstruction of protein complexes based on co-segregation. The whole dataset is available at http://R-DeeP.dkfz.de, providing proteome-wide, specific, and quantitative identification of proteins with RNA-dependent interactions and aiming at future functional discovery of RNA-protein complexes.


Assuntos
Centrifugação com Gradiente de Concentração/métodos , Mapas de Interação de Proteínas , Proteoma/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Fatores de Transcrição/genética , Centrifugação com Gradiente de Concentração/instrumentação , Cromatina/química , Cromatina/metabolismo , Regulação da Expressão Gênica , Ontologia Genética , Células HeLa , Humanos , Disseminação de Informação , Internet , Anotação de Sequência Molecular , Ligação Proteica , Proteoma/classificação , Proteoma/metabolismo , Proteômica/métodos , RNA/metabolismo , Proteínas de Ligação a RNA/classificação , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo
6.
J Immunol ; 212(2): 245-257, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38047900

RESUMO

CD8 T cells are emerging as important mediators in atherosclerosis and cardiovascular disease (CVD). Immune activation may play a particular role in people with HIV (PWH) who are at an increased risk of CVD, even after controlling for known CVD risk factors. Latent CMV infection is associated with increased CVD risk for both PWH and people without HIV, and human CMV-specific CD4 and CD8 T cells are enriched for an immunosenescent phenotype. We previously showed that CMV coinfection in PWH promotes vascular homing and activation of inflammatory CD4 T cells through the CD2-LFA-3 axis. However, the role of CD2/LFA3 costimulation of CD8 T cells in PWH with CMV has yet to be described. In the present study, we demonstrate that CD2 expression on CX3CR1+CD57+CD28- inflammescent CD8 T cells is increased on cells from CMV-seropositive PWH. In vitro CD2/LFA-3 costimulation enhances TCR-mediated activation of these inflammatory CD8 memory T cells. Finally, we show that LFA-3 is highly expressed in aortas of SIV-infected rhesus macaques and in atherosclerotic plaques of people without HIV. Our findings are consistent with a model in which CMV infection enhances CD2 expression on highly proinflammatory CD8 T cells that can then be stimulated by LFA-3 expressed in the vasculature, even in the absence of CD28 costimulation. This model, in which CMV infection exacerbates toxic cytokine and granzyme production by CD8 T cells within the vasculature, highlights a potential therapeutic target in atherosclerosis development and progression, especially for PWH.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Infecções por Citomegalovirus , Infecções por HIV , Animais , Humanos , Antígenos CD28/metabolismo , Infecções por HIV/tratamento farmacológico , Citomegalovirus , Antígenos CD58/metabolismo , Macaca mulatta , Linfócitos T CD8-Positivos , Linfócitos T CD4-Positivos , Aterosclerose/metabolismo
7.
Nature ; 580(7801): 130-135, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238926

RESUMO

Caspase-dependent apoptosis accounts for approximately 90% of homeostatic cell turnover in the body1, and regulates inflammation, cell proliferation, and tissue regeneration2-4. How apoptotic cells mediate such diverse effects is not fully understood. Here we profiled the apoptotic metabolite secretome and determined its effects on the tissue neighbourhood. We show that apoptotic lymphocytes and macrophages release specific metabolites, while retaining their membrane integrity. A subset of these metabolites is also shared across different primary cells and cell lines after the induction of apoptosis by different stimuli. Mechanistically, the apoptotic metabolite secretome is not simply due to passive emptying of cellular contents and instead is a regulated process. Caspase-mediated opening of pannexin 1 channels at the plasma membrane facilitated the release of a select subset of metabolites. In addition, certain metabolic pathways continued to remain active during apoptosis, with the release of only select metabolites from a given pathway. Functionally, the apoptotic metabolite secretome induced specific gene programs in healthy neighbouring cells, including suppression of inflammation, cell proliferation, and wound healing. Furthermore, a cocktail of apoptotic metabolites reduced disease severity in mouse models of inflammatory arthritis and lung-graft rejection. These data advance the concept that apoptotic cells are not inert cells waiting for removal, but instead release metabolites as 'good-bye' signals to actively modulate outcomes in tissues.


Assuntos
Apoptose/fisiologia , Microambiente Celular , Sistemas do Segundo Mensageiro/fisiologia , Animais , Artrite , Caspases/metabolismo , Linhagem Celular , Proliferação de Células/genética , Sobrevivência Celular/genética , Conexinas/metabolismo , Modelos Animais de Doenças , Rejeição de Enxerto , Humanos , Inflamação/genética , Transplante de Pulmão , Linfócitos/enzimologia , Linfócitos/metabolismo , Macrófagos/enzimologia , Macrófagos/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Fagócitos/metabolismo , Cicatrização/genética
8.
Bioessays ; 46(7): e2400029, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713170

RESUMO

Flavin-containing monooxygenases (FMOs), traditionally known for detoxifying xenobiotics, are now recognized for their involvement in endogenous metabolism. We recently discovered that an isoform of FMO, fmo-2 in Caenorhabditis elegans, alters endogenous metabolism to impact longevity and stress tolerance. Increased expression of fmo-2 in C. elegans modifies the flux through the key pathway known as One Carbon Metabolism (OCM). This modified flux results in a decrease in the ratio of S-adenosyl-methionine (SAM) to S-adenosyl-homocysteine (SAH), consequently diminishing methylation capacity. Here we discuss how FMO-2-mediated formate production during tryptophan metabolism may serve as a trigger for changing the flux in OCM. We suggest formate bridges tryptophan and OCM, altering metabolic flux away from methylation during fmo-2 overexpression. Additionally, we highlight how these metabolic results intersect with the mTOR and AMPK pathways, in addition to mitochondrial metabolism. In conclusion, the goal of this essay is to bring attention to the central role of FMO enzymes but lack of understanding of their mechanisms. We justify a call for a deeper understanding of FMO enzyme's role in metabolic rewiring through tryptophan/formate or other yet unidentified substrates. Additionally, we emphasize the identification of novel drugs and microbes to induce FMO activity and extend lifespan.


Assuntos
Caenorhabditis elegans , Oxigenases , Xenobióticos , Animais , Xenobióticos/metabolismo , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Oxigenases/metabolismo , Oxigenases/genética , Humanos , Triptofano/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Longevidade
9.
J Neurosci ; 44(26)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38744531

RESUMO

The neurophysiological effects of spinal cord stimulation (SCS) for chronic pain are poorly understood, resulting in inefficient failure-prone programming protocols and inadequate pain relief. Nonetheless, novel stimulation patterns are regularly introduced and adopted clinically. Traditionally, paresthetic sensation is considered necessary for pain relief, although novel paradigms provide analgesia without paresthesia. However, like pain relief, the neurophysiological underpinnings of SCS-induced paresthesia are unknown. Here, we paired biophysical modeling with clinical paresthesia thresholds (of both sexes) to investigate how stimulation frequency affects the neural response to SCS relevant to paresthesia and analgesia. Specifically, we modeled the dorsal column (DC) axonal response, dorsal column nucleus (DCN) synaptic transmission, conduction failure within DC fiber collaterals, and dorsal horn network output. Importantly, we found that high-frequency stimulation reduces DC fiber activation thresholds, which in turn accurately predicts clinical paresthesia perception thresholds. Furthermore, we show that high-frequency SCS produces asynchronous DC fiber spiking and ultimately asynchronous DCN output, offering a plausible biophysical basis for why high-frequency SCS is less comfortable and produces qualitatively different sensation than low-frequency stimulation. Finally, we demonstrate that the model dorsal horn network output is sensitive to SCS-inherent variations in spike timing, which could contribute to heterogeneous pain relief across patients. Importantly, we show that model DC fiber collaterals cannot reliably follow high-frequency stimulation, strongly affecting the network output and typically producing antinociceptive effects at high frequencies. Altogether, these findings clarify how SCS affects the nervous system and provide insight into the biophysics of paresthesia generation and pain relief.


Assuntos
Parestesia , Estimulação da Medula Espinal , Estimulação da Medula Espinal/métodos , Humanos , Parestesia/fisiopatologia , Parestesia/terapia , Masculino , Feminino , Adulto , Manejo da Dor/métodos , Modelos Neurológicos , Pessoa de Meia-Idade , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia
10.
Dev Biol ; 515: 102-111, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39004200

RESUMO

The Dobbs decision of the United States Supreme Court and the actions of several state legislatures have made it risky, if not outright dangerous, to teach factual material concerning human embryology. At some state universities, for instance, if a professor's lecture is felt to teach or discuss abortion (as it might when teaching about tubal pregnancies, hydatidiform moles, or eneuploidy), that instructor risks imprisonment for up to 14 years (Gyori, 2023). Some states' new censorship rules have thus caused professors to drop modules on abortion from numerous science and humanities courses. In most states, instructors can still teach about human embryonic development and not risk putting their careers or livelihoods in jeopardy. However, even in many of these institutions, students can bring a professor to a disciplinary hearing by claiming that the instructor failed to provide ample trigger warnings on such issues. This essay attempts to provide some strategies wherein human embryology and the ethical issues surrounding it might be taught and students may be given resources to counter unscientific falsehoods about fertilization and human development. This essay provides evidence for teaching the following propositions. Mis-information about human biology and medicine is rampant on the internet, and there are skills that can be taught to students that will help them determine which sites should trusted. This is a skill that needs to be taught as part of science courses.


Assuntos
Embriologia , Humanos , Estados Unidos , Embriologia/educação , Início da Vida Humana , Aborto Induzido/educação , Feminino , Gravidez , Ensino
11.
Development ; 149(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35775576

RESUMO

What can developmental biology contribute toward mitigating the consequences of anthropogenic assaults on the environment and climate change? In this Spotlight article, we advocate a developmental biology that takes seriously Lynn Margulis' claim that 'the environment is part of the body'. We believe this to be a pre-condition for developmental biology playing important roles in conservation and environmental restoration. We need to forge a developmental biology of the holobiont - the multi-genomic physiologically integrated organism that is also a functional biome. To this end, we highlight how developmental biology needs to explore more deeply the interactions between developing organisms, and their chemical, physical and biotic environments.


Assuntos
Biodiversidade , Simbiose , Ecossistema , Genômica
12.
Mol Cell Proteomics ; 22(8): 100614, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392812

RESUMO

Protein phosphorylation is an essential regulatory mechanism that controls most cellular processes, including cell cycle progression, cell division, and response to extracellular stimuli, among many others, and is deregulated in many diseases. Protein phosphorylation is coordinated by the opposing activities of protein kinases and protein phosphatases. In eukaryotic cells, most serine/threonine phosphorylation sites are dephosphorylated by members of the Phosphoprotein Phosphatase (PPP) family. However, we only know for a few phosphorylation sites which specific PPP dephosphorylates them. Although natural compounds such as calyculin A and okadaic acid inhibit PPPs at low nanomolar concentrations, no selective chemical PPP inhibitors exist. Here, we demonstrate the utility of endogenous tagging of genomic loci with an auxin-inducible degron (AID) as a strategy to investigate specific PPP signaling. Using Protein Phosphatase 6 (PP6) as an example, we demonstrate how rapidly inducible protein degradation can be employed to identify dephosphorylation sites and elucidate PP6 biology. Using genome editing, we introduce AID-tags into each allele of the PP6 catalytic subunit (PP6c) in DLD-1 cells expressing the auxin receptor Tir1. Upon rapid auxin-induced degradation of PP6c, we perform quantitative mass spectrometry-based proteomics and phosphoproteomics to identify PP6 substrates in mitosis. PP6 is an essential enzyme with conserved roles in mitosis and growth signaling. Consistently, we identify candidate PP6c-dependent dephosphorylation sites on proteins implicated in coordinating the mitotic cell cycle, cytoskeleton, gene expression, and mitogen-activated protein kinase (MAPK) and Hippo signaling. Finally, we demonstrate that PP6c opposes the activation of large tumor suppressor 1 (LATS1) by dephosphorylating Threonine 35 (T35) on Mps One Binder (MOB1), thereby blocking the interaction of MOB1 and LATS1. Our analyses highlight the utility of combining genome engineering, inducible degradation, and multiplexed phosphoproteomics to investigate signaling by individual PPPs on a global level, which is currently limited by the lack of tools for specific interrogation.


Assuntos
Neoplasias Colorretais , Proteínas Serina-Treonina Quinases , Humanos , Proteólise , Proteínas Serina-Treonina Quinases/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Treonina/metabolismo , Neoplasias Colorretais/genética , Proteína Fosfatase 2/metabolismo
13.
PLoS Genet ; 18(1): e1009622, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34982775

RESUMO

Ssn3, also known as Cdk8, is a member of the four protein Cdk8 submodule within the multi-subunit Mediator complex involved in the co-regulation of transcription. In Candida albicans, the loss of Ssn3 kinase activity affects multiple phenotypes including cellular morphology, metabolism, nutrient acquisition, immune cell interactions, and drug resistance. In these studies, we generated a strain in which Ssn3 was replaced with a functional variant of Ssn3 that can be rapidly and selectively inhibited by the ATP analog 3-MB-PP1. Consistent with ssn3 null mutant and kinase dead phenotypes, inhibition of Ssn3 kinase activity promoted hypha formation. Furthermore, the increased expression of hypha-specific genes was the strongest transcriptional signal upon inhibition of Ssn3 in transcriptomics analyses. Rapid inactivation of Ssn3 was used for phosphoproteomic studies performed to identify Ssn3 kinase substrates associated with filamentation potential. Both previously validated and novel Ssn3 targets were identified. Protein phosphorylation sites that were reduced specifically upon Ssn3 inhibition included two sites in Flo8 which is a transcription factor known to positively regulate C. albicans morphology. Mutation of the two Flo8 phosphosites (threonine 589 and serine 620) was sufficient to increase Flo8-HA levels and Flo8 dependent transcriptional and morphological changes, suggesting that Ssn3 kinase activity negatively regulates Flo8.Under embedded conditions, when ssn3Δ/Δ and efg1Δ/Δ mutants were hyperfilamentous, FLO8 was essential for hypha formation. Previous work has also shown that loss of Ssn3 activity leads to increased alkalinization of medium with amino acids. Here, we show that the ssn3Δ/Δ medium alkalinization phenotype, which is dependent on STP2, a transcription factor involved in amino acid utilization, also requires FLO8 and EFG1. Together, these data show that Ssn3 activity can modulate Flo8 and its direct and indirect interactions in different ways, and underscores the potential importance of considering Ssn3 function in the control of transcription factor activities.


Assuntos
Candida albicans/patogenicidade , Quinase 8 Dependente de Ciclina/genética , Proteômica/métodos , Purinas/farmacologia , Fatores de Transcrição/metabolismo , Candida albicans/efeitos dos fármacos , Candida albicans/metabolismo , Quinase 8 Dependente de Ciclina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Mutação com Perda de Função , Fosforilação , Fatores de Transcrição/genética
14.
J Infect Dis ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39036987

RESUMO

Therapeutic monoclonal antibodies (mAbs) have been studied in humans, but the impact on immune memory of mAb treatment during an ongoing infection has remained unclear. We evaluated the effect of infusion of the anti-SARS-CoV-2 spike receptor binding domain (RBD) mAb bamlanivimab on memory B cells (MBCs) in SARS-CoV-2-infected individuals. Bamlanivimab treatment skewed the repertoire of memory B cells targeting Spike towards non-RBD epitopes. Furthermore, the relative affinity of RBD memory B cells was weaker in mAb-treated individuals compared to placebo-treated individuals over time. Subsequently, after mRNA COVID-19 vaccination, memory B cell differences persisted and mapped to a specific reduction in recognition of the class II RBD site, the same RBD epitope recognized by bamlanivimab. These findings indicate a substantial role of antibody feedback in regulating memory B cell responses to infection, and single mAb administration can continue to impact memory B cell responses to additional antigen exposures months later.

15.
BMC Genomics ; 25(1): 433, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693476

RESUMO

BACKGROUND: The increasing burden of dengue virus on public health due to more explosive and frequent outbreaks highlights the need for improved surveillance and control. Genomic surveillance of dengue virus not only provides important insights into the emergence and spread of genetically diverse serotypes and genotypes, but it is also critical to monitor the effectiveness of newly implemented control strategies. Here, we present DengueSeq, an amplicon sequencing protocol, which enables whole-genome sequencing of all four dengue virus serotypes. RESULTS: We developed primer schemes for the four dengue virus serotypes, which can be combined into a pan-serotype approach. We validated both approaches using genetically diverse virus stocks and clinical specimens that contained a range of virus copies. High genome coverage (>95%) was achieved for all genotypes, except DENV2 (genotype VI) and DENV 4 (genotype IV) sylvatics, with similar performance of the serotype-specific and pan-serotype approaches. The limit of detection to reach 70% coverage was 10-100 RNA copies/µL for all four serotypes, which is similar to other commonly used primer schemes. DengueSeq facilitates the sequencing of samples without known serotypes, allows the detection of multiple serotypes in the same sample, and can be used with a variety of library prep kits and sequencing instruments. CONCLUSIONS: DengueSeq was systematically evaluated with virus stocks and clinical specimens spanning the genetic diversity within each of the four dengue virus serotypes. The primer schemes can be plugged into existing amplicon sequencing workflows to facilitate the global need for expanded dengue virus genomic surveillance.


Assuntos
Vírus da Dengue , Genoma Viral , Sorogrupo , Sequenciamento Completo do Genoma , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/classificação , Sequenciamento Completo do Genoma/métodos , Humanos , Genótipo , Dengue/virologia , Dengue/diagnóstico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Viral/genética
16.
J Neurophysiol ; 131(2): 261-277, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38169334

RESUMO

Microelectrodes serve as a fundamental tool in electrophysiology research throughout the nervous system, providing a means of exploring neural function with a high resolution of neural firing information. We constructed a hybrid computational model using the finite element method and multicompartment cable models to explore factors that contribute to extracellular voltage waveforms that are produced by sensory pseudounipolar neurons, specifically smaller A-type neurons, and that are recorded by microelectrodes in dorsal root ganglia. The finite element method model included a dorsal root ganglion, surrounding tissues, and a planar microelectrode array. We built a multicompartment neuron model with multiple trajectories of the glomerular initial segment found in many A-type sensory neurons. Our model replicated both the somatic intracellular voltage profile of Aδ low-threshold mechanoreceptor neurons and the unique extracellular voltage waveform shapes that are observed in experimental settings. Results from this model indicated that tortuous glomerular initial segment geometries can introduce distinct multiphasic properties into a neuron's recorded waveform. Our model also demonstrated how recording location relative to specific microanatomical components of these neurons, and recording distance from these components, can contribute to additional changes in the multiphasic characteristics and peak-to-peak voltage amplitude of the waveform. This knowledge may provide context for research employing microelectrode recordings of pseudounipolar neurons in sensory ganglia, including functional mapping and closed-loop neuromodulation. Furthermore, our simulations gave insight into the neurophysiology of pseudounipolar neurons by demonstrating how the glomerular initial segment aids in increasing the resistance of the stem axon and mitigating rebounding somatic action potentials.NEW & NOTEWORTHY We built a computational model of sensory neurons in the dorsal root ganglia to investigate factors that influence the extracellular waveforms recorded by microelectrodes. Our model demonstrates how the unique structure of these neurons can lead to diverse and often multiphasic waveform profiles depending on the location of the recording contact relative to microanatomical neural components. Our model also provides insight into the neurophysiological function of axon glomeruli that are often present in these neurons.


Assuntos
Gânglios Espinais , Células Receptoras Sensoriais , Gânglios Espinais/fisiologia , Microeletrodos , Potenciais de Ação/fisiologia , Simulação por Computador
17.
J Neurophysiol ; 131(6): 1168-1174, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629146

RESUMO

Microneurographic recordings of muscle sympathetic nerve activity (MSNA) reflect postganglionic sympathetic axonal activity directed toward the skeletal muscle vasculature. Recordings are typically evaluated for spontaneous bursts of MSNA; however, the filtering and integration of raw neurograms to obtain multiunit bursts conceals the underlying c-fiber discharge behavior. The continuous wavelet transform with matched mother wavelet has permitted the assessment of action potential discharge patterns, but this approach uses a mother wavelet optimized for an amplifier that is no longer commercially available (University of Iowa Bioengineering Nerve Traffic Analysis System; Iowa NTA). The aim of this project was to determine the morphology and action potential detection performance of mother wavelets created from the commercially available NeuroAmp (ADinstruments), from distinct laboratories, compared with a mother wavelet generated from the Iowa NTA. Four optimized mother wavelets were generated in a two-phase iterative process from independent datasets, collected by separate laboratories (one Iowa NTA, three NeuroAmp). Action potential extraction performance of each mother wavelet was compared for each of the NeuroAmp-based datasets. The total number of detected action potentials was not significantly different across wavelets. However, the predictive value of action potential detection was reduced when the Iowa NTA wavelet was used to detect action potentials in NeuroAmp data, but not different across NeuroAmp wavelets. To standardize approaches, we recommend a NeuroAmp-optimized mother wavelet be used for the evaluation of sympathetic action potential discharge behavior when microneurographic data are collected with this system.NEW & NOTEWORTHY The morphology of custom mother wavelets produced across laboratories using the NeuroAmp was highly similar, but distinct from the University of Iowa Bioengineering Nerve Traffic Analysis System. Although the number of action potentials detected was similar between collection systems and mother wavelets, the predictive value differed. Our data suggest action potential analysis using the continuous wavelet transform requires a mother wavelet optimized for the collection system.


Assuntos
Potenciais de Ação , Análise de Ondaletas , Potenciais de Ação/fisiologia , Animais , Sistema Nervoso Simpático/fisiologia , Músculo Esquelético/fisiologia , Masculino
18.
Emerg Infect Dis ; 30(2): 376-379, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38232709

RESUMO

During May 2022-April 2023, dengue virus serotype 3 was identified among 601 travel-associated and 61 locally acquired dengue cases in Florida, USA. All 203 sequenced genomes belonged to the same genotype III lineage and revealed potential transmission chains in which most locally acquired cases occurred shortly after introduction, with little sustained transmission.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Florida/epidemiologia , Viagem , Sequência de Bases , Genótipo , Sorogrupo , Filogenia
19.
Anal Chem ; 96(32): 12937-12942, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39082755

RESUMO

Liquid chromatography-mass spectrometry (LC-MS) based metabolomics suffers from extended duty cycles and matrix-dependent quantitation. Chemical tags with 96 unique masses are reported, which alleviate the metabolomic workflow bottleneck and allow for absolute quantitation. A metabolic screen for carboxylic acids was performed on mammalian cells deprived of various nutrients and showed 24% RSD and analysis of 288 samples in 2 h.


Assuntos
Metabolômica , Metabolômica/métodos , Humanos , Espectrometria de Massas , Marcação por Isótopo , Ácidos Carboxílicos/metabolismo , Ácidos Carboxílicos/análise , Cromatografia Líquida/métodos , Ensaios de Triagem em Larga Escala
20.
Anal Chem ; 96(29): 11639-11643, 2024 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-38976774

RESUMO

Discovery and identification of a new endogenous metabolite are typically hindered by requirements of large sample volumes and multistage purifications to guide synthesis of the standard. Presented here is a metabolomics platform that uses chemical tagging and tandem mass spectrometry to determine structure, direct synthesis, and confirm identity. Three new homocysteine metabolites are reported: N-succinyl homocysteine, 2-methyl-1,3-thiazinane-4-carboxylic acid (MTCA), and homolanthinone.


Assuntos
Homocisteína , Espectrometria de Massas em Tandem , Homocisteína/análise , Homocisteína/metabolismo , Homocisteína/química , Espectrometria de Massas em Tandem/métodos , Metabolômica/métodos , Humanos , Tiazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA