Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Chem ; 10: 822868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252117

RESUMO

Oil in water emulsions are an important class of soft material that are used in the food, cosmetic, and biomedical industries. These materials are formed through the use of emulsifiers that are able to stabilize oil droplets in water. Historically emulsifiers have been developed from lipids or from large biomolecules such as proteins. However, the ability to use short peptides, which have favorable degradability and toxicity profiles is seen as an attractive alternative. In this work, we demonstrate that it is possible to design emulsifiers from short (tetra) peptides that have tunability (i.e., the surface activity of the emulsion can be tuned according to the peptide primary sequence). This design process is achieved by applying coarse grain molecular dynamics simulation to consecutively reduce the molecular search space from the 83,521 candidates initially considered in the screen to four top ranking candidates that were then studied experimentally. The results of the experimental study correspond well to the predicted results from the computational screening verifying the potential of this screening methodology to be applied to a range of different molecular systems.

2.
Chem Commun (Camb) ; 53(69): 9562-9565, 2017 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-28805225

RESUMO

Peptide co-assembly is of interest for the development of functional supramolecular biomaterials. Herein, computational simulations were combined with experimental validation to aid the design and understanding of cooperative co-assembly of a structure-forming tripeptide (FFD) and a functional copper-binding tripeptide (GHK) leading to hydrogel formation in response to complexation with copper ions.

3.
Science ; 356(6342): 1064-1068, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28596363

RESUMO

Melanins are a family of heterogeneous polymeric pigments that provide ultraviolet (UV) light protection, structural support, coloration, and free radical scavenging. Formed by oxidative oligomerization of catecholic small molecules, the physical properties of melanins are influenced by covalent and noncovalent disorder. We report the use of tyrosine-containing tripeptides as tunable precursors for polymeric pigments. In these structures, phenols are presented in a (supra-)molecular context dictated by the positions of the amino acids in the peptide sequence. Oxidative polymerization can be tuned in a sequence-dependent manner, resulting in peptide sequence-encoded properties such as UV absorbance, morphology, coloration, and electrochemical properties over a considerable range. Short peptides have low barriers to application and can be easily scaled, suggesting near-term applications in cosmetics and biomedicine.


Assuntos
Melaninas/química , Peptídeos/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Oxirredução , Conformação Proteica , Multimerização Proteica , Tirosina/química , Raios Ultravioleta
4.
Adv Mater ; 28(7): 1381-6, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26639675

RESUMO

A series of tripeptides is shown to form emulsions with sequence tunable properties. Using a combination of simulations and experiments, it is shown that two types of oil-in-water emulsions may be produced, either forming stable interfacial nanofiber networks with remarkable stability, or more conventional surfactant-like monolayers.


Assuntos
Emulsificantes/química , Oligopeptídeos/química , Modelos Moleculares , Conformação Molecular , Óleos/química , Água/química
5.
Nat Chem ; 7(1): 30-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25515887

RESUMO

Peptides that self-assemble into nanostructures are of tremendous interest for biological, medical, photonic and nanotechnological applications. The enormous sequence space that is available from 20 amino acids probably harbours many interesting candidates, but it is currently not possible to predict supramolecular behaviour from sequence alone. Here, we demonstrate computational tools to screen for the aqueous self-assembly propensity in all of the 8,000 possible tripeptides and evaluate these by comparison with known examples. We applied filters to select for candidates that simultaneously optimize the apparently contradicting requirements of aggregation propensity and hydrophilicity, which resulted in a set of design rules for self-assembling sequences. A number of peptides were subsequently synthesized and characterized, including the first reported tripeptides that are able to form a hydrogel at neutral pH. These tools, which enable the peptide sequence space to be searched for supramolecular properties, enable minimalistic peptide nanotechnology to deliver on its promise.


Assuntos
Hidrogéis/química , Oligopeptídeos/química , Sequência de Aminoácidos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular , Nanoestruturas/química , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA