RESUMO
Digital solutions are needed to support rapid increases in the application of genetic/genomic tests (GTs) in diverse clinical settings and patient populations. We developed GUÍA, a bilingual digital application that facilitates disclosure of GT results. The NYCKidSeq randomized controlled trial enrolled diverse children with neurologic, cardiac, and immunologic conditions who underwent GTs. The trial evaluated GUÍA's impact on understanding the GT results by randomizing families to results disclosure genetic counseling with GUÍA (intervention) or standard of care (SOC). Parents/legal guardians (participants) completed surveys at baseline, post-results disclosure, and 6 months later. Survey measures assessed the primary study outcomes of participants' perceived understanding of and confidence in explaining their child's GT results and the secondary outcome of objective understanding. The analysis included 551 diverse participants, 270 in the GUÍA arm and 281 in SOC. Participants in the GUÍA arm had significantly higher perceived understanding post-results (OR = 2.8, CI[1.004, 7.617], p = 0.049) and maintained higher objective understanding over time (OR = 1.1, CI[1.004, 1.127], p = 0.038) compared to SOC. There was no impact on perceived confidence. Hispanic/Latino(a) individuals in the GUÍA arm maintained higher perceived understanding (OR = 3.9, CI[1.603, 9.254], p = 0.003), confidence (OR = 2.7, CI[1.021, 7.277], p = 0.046), and objective understanding (OR = 1.1, CI[1.009, 1.212], p = 0.032) compared to SOC. This trial demonstrates that GUÍA positively impacts understanding of GT results in diverse parents of children with suspected genetic conditions and builds a case for utilizing GUÍA to deliver complex results. Continued development and evaluation of digital applications in diverse populations are critical for equitably scaling GT offerings in specialty clinics.
Assuntos
Revelação , Aconselhamento Genético , Criança , Humanos , Testes Genéticos , Pais , GenômicaRESUMO
PURPOSE: To better understand the effects of returning diagnostic sequencing results on clinical actions and economic outcomes for pediatric patients with suspected genetic disorders. METHODS: Longitudinal physician claims data after diagnostic sequencing were obtained for patients aged 0 to 21 years with neurologic, cardiac, and immunologic disorders with suspected genetic etiology. We assessed specialist consultation rates prompted by primary diagnostic results, as well as marginal effects on overall 18-month physician services and costs. RESULTS: We included data on 857 patients (median age: 9.6 years) with a median follow-up of 17.3 months after disclosure of diagnostic sequencing results. The likelihood of having ≥1 recommendation for specialist consultation in 155 patients with positive findings was high (72%) vs 23% in 443 patients with uncertain findings and 21% in 259 patients with negative findings (P < .001). Follow-through consultation occurred in 30%. Increases in 18-month physician services and costs following a positive finding diminished after multivariable adjustment. Also, no significant differences between those with uncertain and negative findings were demonstrated. CONCLUSION: Our study did not provide evidence for significant increases in downstream physician services and costs after returning positive or uncertain diagnostic sequencing findings. More large-scale longitudinal studies are needed to confirm these findings.
Assuntos
Revelação , Médicos , Humanos , Criança , Custos e Análise de CustoRESUMO
PURPOSE: Adoption of genome sequencing (GS) as a first-line test requires evaluation of its diagnostic yield. We evaluated the GS and targeted gene panel (TGP) testing in diverse pediatric patients (probands) with suspected genetic conditions. METHODS: Probands with neurologic, cardiac, or immunologic conditions were offered GS and TGP testing. Diagnostic yield was compared using a fully paired study design. RESULTS: A total of 645 probands (median age 9 years) underwent genetic testing, and 113 (17.5%) received a molecular diagnosis. Among 642 probands with both GS and TGP testing, GS yielded 106 (16.5%) and TGPs yielded 52 (8.1%) diagnoses (P < .001). Yield was greater for GS vs TGPs in Hispanic/Latino(a) (17.2% vs 9.5%, P < .001) and White/European American (19.8% vs 7.9%, P < .001) but not in Black/African American (11.5% vs 7.7%, P = .22) population groups by self-report. A higher rate of inconclusive results was seen in the Black/African American (63.8%) vs White/European American (47.6%; P = .01) population group. Most causal copy number variants (17 of 19) and mosaic variants (6 of 8) were detected only by GS. CONCLUSION: GS may yield up to twice as many diagnoses in pediatric patients compared with TGP testing but not yet across all population groups.
Assuntos
Predisposição Genética para Doença , Patologia Molecular , Humanos , Criança , Testes Genéticos/métodos , Sequência de Bases , Mapeamento CromossômicoRESUMO
Copy number variations (CNVs) play a significant role in human disease. While chromosomal microarray has traditionally been the first-tier test for CNV detection, use of genome sequencing (GS) is increasing. We report the frequency of CNVs detected with GS in a diverse pediatric cohort from the NYCKidSeq program and highlight specific examples of its clinical impact. A total of 1052 children (0-21 years) with neurodevelopmental, cardiac, and/or immunodeficiency phenotypes received GS. Phenotype-driven analysis was used, resulting in 183 (17.4%) participants with a diagnostic result. CNVs accounted for 20.2% of participants with a diagnostic result (37/183) and ranged from 0.5 kb to 16 Mb. Of participants with a diagnostic result (n = 183) and phenotypes in more than one category, 5/17 (29.4%) were solved by a CNV finding, suggesting a high prevalence of diagnostic CNVs in participants with complex phenotypes. Thirteen participants with a diagnostic CNV (35.1%) had previously uninformative genetic testing, of which nine included a chromosomal microarray. This study demonstrates the benefits of GS for reliable detection of CNVs in a pediatric cohort with variable phenotypes.
Assuntos
Variações do Número de Cópias de DNA , Testes Genéticos , Humanos , Criança , Variações do Número de Cópias de DNA/genética , Mapeamento Cromossômico/métodos , Testes Genéticos/métodos , Fenótipo , Análise em MicrossériesRESUMO
The increased use of next-generation sequencing has expanded our understanding of the involvement and prevalence of mosaicism in genetic disorders. We describe a total of eleven cases: nine in which mosaic variants detected by genome sequencing (GS) and/or targeted gene panels (TGPs) were considered to be causative for the proband's phenotype, and two of apparent parental mosaicism. Variants were identified in the following genes: PHACTR1, SCN8A, KCNT1, CDKL5, NEXMIF, CUX1, TSC2, GABRB2, and SMARCB1. In addition, we identified one large duplication including three genes, UBE3A, GABRB3, and MAGEL2, and one large deletion including deletion of ARFGAP1, EEF1A2, CHRNA4, and KCNQ2. All patients were enrolled in the NYCKidSeq study, a research program studying the communication of genomic information in clinical care, as well as the clinical utility and diagnostic yield of GS for children with suspected genetic disorders in diverse populations in New York City. We observed variability in the correlation between reported variant allele fraction and the severity of the patient's phenotype, although we were not able to determine the mosaicism percentage in clinically relevant tissue(s). Although our study was not sufficiently powered to assess differences in mosaicism detection between the two testing modalities, we saw a trend toward better detection by GS as compared with TGP testing. This case series supports the importance of mosaicism in childhood-onset genetic conditions and informs guidelines for laboratory and clinical interpretation of mosaic variants detected by GS.
Assuntos
Espasmos Infantis , Humanos , Alelos , Fenótipo , Mosaicismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas , Fator 1 de Elongação de Peptídeos , Proteínas Ativadoras de GTPase , Canais de Potássio Ativados por Sódio , Proteínas do Tecido NervosoRESUMO
The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.
Assuntos
Epilepsia Generalizada , Trocador de Sódio e Cálcio , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Glutamina/metabolismo , Histidina/metabolismo , Humanos , Metaboloma , Nitrogênio/metabolismo , Trocador de Sódio e Cálcio/genéticaRESUMO
The augmented use of genomic testing across different medical subspecialties has led to increased involvement of genetic counselors (GCs) in specialized areas of medicine. However, the lack of educational infrastructure required for changing scholastic needs of GCs entering new subspecialties lends to the burden of self-directed learning and inconsistent knowledge. We conducted a cross-sectional study surveying GCs with experience in the emerging genetic subspecialties of Immunology, Dermatology, Endocrinology, and Pulmonology (abbreviated as "IDEP") on current practices, clinical challenges, and educational strategies undertaken while working in these settings. We compared knowledge and confidence in skills related to IDEP patient care between GCs who do (experienced cohort) and do not (control cohort) practice in these settings to assess their comfort with working in subspecialties. Participants were recruited from the National Society of Genetic Counselors membership. A total of 304 GCs (178 experienced and 126 control) completed the survey. Most GCs in the experienced cohort saw IDEP patients by themselves (n = 104; 58.4%) or with a geneticist (n = 97; 54.4%) and almost all (n = 176; 99%) cited GeneReviews as a primary informational source for IDEP genetics but half (n = 91; 51.1%) agreed that a dedicated online course would be the best way to learn about a specific subspecialty. The experienced cohort scored higher on confidence in all skills (p < 0.001, z = 7.32) and knowledge (p < 0.001, z = 5.68) related to IDEP genetics than the control cohort. Previous exposure to IDEP through graduate school coursework and rotations positively correlated with better self-confidence in skills (p = 0.02, z = -2.19; p < 0.001, z = -5.25) and genetic knowledge (p = 0.03, z = -2.09; p < 0.001, z = -2.81) related to IDEP patient care. Years of experience working as a GC did not correlate with better confidence in skills (p = 0.53) or better IDEP genetic knowledge (p = 0.15). Our findings show that provision of opportunities for increased exposure to subspecialties could help maximize GCs' ability to work in emerging niche fields.
Assuntos
Conselheiros , Humanos , Aconselhamento Genético , Estudos Transversais , Aprendizagem , EscolaridadeRESUMO
PURPOSE: Use of genomic sequencing is increasing at a pace that requires technological solutions to effectively meet the needs of a growing patient population. We developed GUÍA, a web-based application, to enhance the delivery of genomic results and related clinical information to patients and families. METHODS: GUÍA development occurred in five overlapping phases: formative research, content development, stakeholder/community member input, user interface design, and web application development. Development was informed by formative qualitative research involving parents (N = 22) whose children underwent genomic testing. Participants enrolled in the NYCKidSeq pilot study (N = 18) completed structured feedback interviews post-result disclosure using GUÍA. Genetic specialists, researchers, patients, and community stakeholders provided their perspectives on GUÍA's design to ensure technical, cultural, and literacy appropriateness. RESULTS: NYCKidSeq participants responded positively to the use of GUÍA to deliver their children's results. All participants (N = 10) with previous experience with genetic testing felt GUÍA improved result disclosure, and 17 (94%) participants said the content was clear. CONCLUSION: GUÍA communicates complex genomic information in an understandable and personalized manner. Initial piloting demonstrated GUÍA's utility for families enrolled in the NYCKidSeq pilot study. Findings from the NYCKidSeq clinical trial will provide insight into GUÍA's effectiveness in communicating results among diverse, multilingual populations.
Assuntos
Revelação , Aconselhamento Genético , Criança , Testes Genéticos , Humanos , Pais , Projetos PilotoRESUMO
There is increasing evidence of the clinical utility of genetic and genomic testing (GT); however, factors influencing personal utility of GT, especially in diverse, multilingual populations, remain unclear. We explored these factors in a diverse cohort of parents/guardians (participants) whose children received clinical GT through the NYCKidSeq program. A total of 847 participants completed surveys at baseline, post-results disclosure, and 6 months (6m) post-results. The largest population groups were Hispanic/Latino(a) (48%), White/European American (24%), and Black/African American (16%). Personal utility was assessed using the Personal Utility (PrU) scale, adapted for pediatric populations and included on the surveys. Three PrU subscales were identified using factor analysis: practical, educational, and parental psychological utility. Overall personal utility summary score and the three subscales significantly decreased after receiving results and over time. Hispanic/Latino(a) participants identified greater overall personal utility than European American and African American participants at all time points (p < 0.001) as did participants whose children received positive/likely positive results compared with those with negative and uncertain results (post-results: p < 0.001 and p < 0.001; 6m post-results: p = 0.002 and p < 0.001, respectively). Post-results, higher subscale scores were associated with lower education levels (practical, parental psychological: p ≤ 0.02) and higher levels of trust in the healthcare system (practical, parental psychological: p ≤ 0.04). These findings help to understand the perspectives of diverse parents/guardians, which is critical to tailoring pre- and post-test counseling across a variety of populations and clinical settings.
Assuntos
Testes Genéticos , Pais , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Genômica , Hispânico ou Latino/genética , Multilinguismo , Inquéritos e Questionários , Brancos/genética , Negro ou Afro-Americano/genéticaRESUMO
Background: Digital solutions are needed to support rapid increases in the application of genetic and genomic tests (GT) in diverse clinical settings and patient populations. We developed GUÍA, a bi-lingual web-based platform that facilitates disclosure of GT results. The NYCKidSeq randomized controlled trial evaluated GUÍA's impact on understanding of GT results. Methods: NYCKidSeq enrolled diverse children with neurologic, cardiac, and immunologic conditions who underwent GT. Families were randomized to genetic counseling with GUÍA (intervention) or standard of care (SOC) genetic counseling for results disclosure. Parents/legal guardians (participants) completed surveys at baseline, post-results disclosure, and 6-months later. Survey measures assessed the primary study outcomes of perceived understanding of and confidence in explaining their child's GT results and the secondary outcome of objective understanding. We used regression models to evaluate the association between the intervention and the study outcomes. Results: The analysis included 551 participants, 270 in the GUÍA arm and 281 in SOC. Participants' mean age was 41.1 years and 88.6% were mothers. Most participants were Hispanic/Latino(a) (46.3%), White/European American (24.5%), or Black/African American (15.8%). Participants in the GUÍA arm had significantly higher perceived understanding post-results (OR=2.8, CI[1.004,7.617], P=0.049) and maintained higher objective understanding over time (OR=1.1, CI[1.004, 1.127], P=0.038) compared to those in the SOC arm. There was no impact on perceived confidence. Hispanic/Latino(a) individuals in the GUÍA arm maintained higher perceived understanding (OR=3.9, CI[1.6, 9.3], P=0.003), confidence (OR=2.7, CI[1.021, 7.277], P=0.046), and objective understanding (OR=1.1, CI[1.009, 1.212], P=0.032) compared to SOC . Conclusions: This trial demonstrates that GUÍA positively impacts understanding of GT results in diverse parents of children with suspected genetic conditions. These findings build a case for utilizing GUÍA to deliver complex and often ambiguous genetic results. Continued development and evaluation of digital applications in diverse populations are critical for equitably scaling GT offerings in specialty clinics. Trial Registration: Clinicaltrials.gov identifier NCT03738098.
RESUMO
Purpose: Adoption of genome sequencing (GS) as a first-line test requires evaluation of its diagnostic yield. We evaluated the GS and targeted gene panel (TGP) testing in diverse pediatric patients (probands) with suspected genetic conditions. Methods: Probands with neurologic, cardiac, or immunologic conditions were offered GS and TGP testing. Diagnostic yield was compared using a fully paired study design. Results: 645 probands (median age 9 years) underwent genetic testing, and 113 (17.5%) received a molecular diagnosis. Among 642 probands with both GS and TGP testing, GS yielded 106 (16.5%) and TGPs yielded 52 (8.1%) diagnoses ( P < .001). Yield was greater for GS vs . TGPs in Hispanic/Latino(a) (17.2% vs . 9.5%, P < .001) and White/European American (19.8% vs . 7.9%, P < .001), but not in Black/African American (11.5% vs . 7.7%, P = .22) population groups by self-report. A higher rate of inconclusive results was seen in the Black/African American (63.8%) vs . White/European American (47.6%; P = .01) population group. Most causal copy number variants (17 of 19) and mosaic variants (6 of 8) were detected only by GS. Conclusion: GS may yield up to twice as many diagnoses in pediatric patients compared to TGP testing, but not yet across all population groups.
RESUMO
BACKGROUND: The COVID-19 pandemic forced healthcare institutions and many clinical research programs to adopt telehealth modalities in order to mitigate viral spread. With the expanded use of telehealth, there is the potential to increase access to genomic medicine to medically underserved populations, yet little is known about how best to communicate genomic results via telehealth while also ensuring equitable access. NYCKidSeq, a multi-institutional clinical genomics research program in New York City, launched the TeleKidSeq pilot study to assess alternative forms of genomic communication and telehealth service delivery models with families from medically underserved populations. METHODS: We aim to enroll 496 participants between 0 and 21 years old to receive clinical genome sequencing. These individuals have a neurologic, cardiovascular, and/or immunologic disease. Participants will be English- or Spanish-speaking and predominantly from underrepresented groups who receive care in the New York metropolitan area. Prior to enrollment, participants will be randomized to either genetic counseling via videoconferencing with screen-sharing or genetic counseling via videoconferencing without screen-sharing. Using surveys administered at baseline, results disclosure, and 6-months post-results disclosure, we will evaluate the impact of the use of screen-sharing on participant understanding, satisfaction, and uptake of medical recommendations, as well as the psychological and socioeconomic implications of obtaining genome sequencing. Clinical utility, cost, and diagnostic yield of genome sequencing will also be assessed. DISCUSSION: The TeleKidSeq pilot study will contribute to innovations in communicating genomic test results to diverse populations through telehealth technology. In conjunction with NYCKidSeq, this work will inform best practices for the implementation of genomic medicine in diverse, English- and Spanish-speaking populations.
RESUMO
Currently, no standardized system exists for evaluating and testing at-risk family members of decedents with abnormal post-mortem genetic testing in cases of sudden unexpected death (SUD). The goal of this study was to evaluate the outcomes of referrals made by an urban medical examiner's office to a multi-disciplinary cardiogenetics clinic. Relatives of decedents with pathogenic/likely pathogenic (P/LP) variants or variants of unknown significance (VUS) in genes known to be associated with cardiomyopathies and/or arrhythmias were identified by the New York City Office of Chief Medical Examiner and referred to the Cardiogenetics Clinic at Montefiore Medical Center. Familial referrals of 15 decedents (median 15 years, range 2 days to 57 years) were evaluated. Variants in 13 genes were identified among decedents (9 arrhythmia, 5 cardiomyopathy). P/LP variants were identified in both arrhythmia (RYR2, SCN5A) and cardiomyopathy syndrome (MYBPC3 (2), MYH7) genes. Thirty-two family members were referred, and 14 variants were detected. One pathogenic (MYBPC3) and two likely pathogenic (RYR2, MYH7) mutations were identified. Referral of at-risk family members of decedents who experienced SUD based on informative post-mortem genetic testing for cardiac and genetic evaluation is warranted, as family studies help to reclassify variants and prevent additional sudden death.
RESUMO
BACKGROUND: Increasingly, genomics is informing clinical practice, but challenges remain for medical professionals lacking genetics expertise, and in access to and clinical utility of genomic testing for minority and underrepresented populations. The latter is a particularly pernicious problem due to the historical lack of inclusion of racially and ethnically diverse populations in genomic research and genomic medicine. A further challenge is the rapidly changing landscape of genetic tests and considerations of cost, interpretation, and diagnostic yield for emerging modalities like whole-genome sequencing. METHODS: The NYCKidSeq project is a randomized controlled trial recruiting 1130 children and young adults predominantly from Harlem and the Bronx with suspected genetic disorders in three disease categories: neurologic, cardiovascular, and immunologic. Two clinical genetic tests will be performed for each participant, either proband, duo, or trio whole-genome sequencing (depending on sample availability) and proband targeted gene panels. Clinical utility, cost, and diagnostic yield of both testing modalities will be assessed. This study will evaluate the use of a novel, digital platform (GUÍA) to digitize the return of genomic results experience and improve participant understanding for English- and Spanish-speaking families. Surveys will collect data at three study visits: baseline (0 months), result disclosure visit (ROR1, + 3 months), and follow-up visit (ROR2, + 9 months). Outcomes will assess parental understanding of and attitudes toward receiving genomic results for their child and behavioral, psychological, and social impact of results. We will also conduct a pilot study to assess a digital tool called GenomeDiver designed to enhance communication between clinicians and genetic testing labs. We will evaluate GenomeDiver's ability to increase the diagnostic yield compared to standard practices, improve clinician's ability to perform targeted reverse phenotyping, and increase the efficiency of genetic testing lab personnel. DISCUSSION: The NYCKidSeq project will contribute to the innovations and best practices in communicating genomic test results to diverse populations. This work will inform strategies for implementing genomic medicine in health systems serving diverse populations using methods that are clinically useful, technologically savvy, culturally sensitive, and ethically sound. TRIAL REGISTRATION: ClinicalTrials.gov NCT03738098 . Registered on November 13, 2018 Trial Sponsor: Icahn School of Medicine at Mount Sinai Contact Name: Eimear Kenny, PhD (Principal Investigator) Address: Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl., Box 1003, New York, NY 10029 Email: eimear.kenny@mssm.edu.
Assuntos
Testes Genéticos , Genômica , Criança , Humanos , Cidade de Nova Iorque , Pais , Projetos Piloto , Ensaios Clínicos Controlados Aleatórios como Assunto , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase , Adulto JovemRESUMO
Delivery of tissue glues through small-bore needles or trocars is critical for sealing holes, affixing medical devices, or attaching tissues together during minimally invasive surgeries. Inspired by the granule-packaged glue delivery system of sandcastle worms, a nanoparticulate formulation of a viscous hydrophobic light-activated adhesive based on poly(glycerol sebacate)-acrylate is developed. Negatively charged alginate is used to stabilize the nanoparticulate surface to significantly reduce its viscosity and to maximize injectability through small-bore needles. The nanoparticulate glues can be concentrated to ≈30 w/v% dispersions in water that remain localized following injection. With the trigger of a positively charged polymer (e.g., protamine), the nanoparticulate glues can quickly assemble into a viscous glue that exhibits rheological, mechanical, and adhesive properties resembling the native poly(glycerol sebacate)-acrylate based glues. This platform should be useful to enable the delivery of viscous glues to augment or replace sutures and staples during minimally invasive procedures.