Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 24(11): 11558-68, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410083

RESUMO

The origin of high-spatial-frequency laser-induced periodic surface structures (HSFL) driven by incident ultrafast laser fields, with their ability to achieve structure resolutions below λ/2, is often obscured by the overlap with regular ripples patterns at quasi-wavelength periodicities. We experimentally demonstrate here employing defined surface topographies that these structures are intrinsically related to surface roughness in the nano-scale domain. Using Zr-based bulk metallic glass (Zr-BMG) and its crystalline alloy (Zr-CA) counterpart formed by thermal annealing from its glassy precursor, we prepared surfaces showing either smooth appearances on thermoplastic BMG or high-density nano-protuberances from randomly distributed embedded nano-crystallites with average sizes below 200 nm on the recrystallized alloy. Upon ultrashort pulse irradiation employing linearly polarized 50 fs, 800 nm laser pulses, the surfaces show a range of nanoscale organized features. The change of topology was then followed under multiple pulse irradiation at fluences around and below the single pulse threshold. While the former material (Zr-BMG) shows a specific high quality arrangement of standard ripples around the laser wavelength, the latter (Zr-CA) demonstrates strong predisposition to form high spatial frequency rippled structures (HSFL). We discuss electromagnetic scenarios assisting their formation based on near-field interaction between particles and field-enhancement leading to structure linear growth. Finite-difference-time-domain simulations outline individual and collective effects of nanoparticles on electromagnetic energy modulation and the feedback processes in the formation of HSFL structures with correlation to regular ripples (LSFL).

2.
Micromachines (Basel) ; 14(2)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36837953

RESUMO

Ultrafast laser ablation is widely used as a versatile method for accurate micro-machining of polymers, glasses and metals for a variety of industrial and biomedical applications. We report on the use of a novel process parameter, the modulation of the laser pulse energy during the multi-scan texturing of surfaces. We show that this new and straightforward control method allows us to attain higher and lower roughness (Ra) values than the conventional constant pulse energy irradiation sequence. This new multi-scanning laser ablation strategy was conducted on metals that are commonly used in the biomedical industry, such as stainless steel, titanium, brass and silver samples, using a linear (increasing or decreasing) gradient of pulse energy, i.e., varying the pulse energy across successive laser scans. The effects of ablation were studied in terms of roughness, developed interfacial area ratio, skewness and ablation efficiency of the processed surfaces. Significantly, the investigation has shown a global trend for all samples that the roughness is minimum when a decreasing energy pulse sequence is employed, i.e., the irradiation sequence ends up with the applied laser fluences close to threshold laser fluences and is maximum with increasing energy distribution. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis on single craters with the three different energy deposition conditions revealed a chaotic and random material redistribution in the cases of uniform and increasing energy distributions and the presence of regular laser-induced periodic surface structures (LIPSS) at the bottom of the ablation region in the case of decreasing energy distribution. It is also shown that the ablation efficiency of the ablated surfaces does not significantly change between the three cases. Therefore, this novel energy control strategy permits the control of the roughness of the processed surfaces without losing the ablation efficiency.

3.
Sci Rep ; 13(1): 6008, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045939

RESUMO

Ultrafast laser processing can induce surface nanostructurating (SNS) in most materials with dimensions close to the irradiation laser wavelength. In-situ SNS characterization could be key for laser parameter's fine-tuning, essential for the generation of complex and/or hybrid nanostructures. Laser Induced Periodic Surface Structures (LIPSS) created in the ultra-violet (UV) range generate the most fascinating effects. They are however highly challenging to characterize in a non-destructive manner since their dimensions can be as small as 100 nm. Conventional optical imaging methods are indeed limited by diffraction to a resolution of [Formula: see text] nm. Although optical super-resolution techniques can go beyond the diffraction limit, which in theory allows the visualization of LIPSS, most super-resolution methods require the presence of small probes (such as fluorophores) which modifies the sample and is usually incompatible with a direct surface inspection. In this paper, we demonstrate that a modified label-free Confocal Reflectance Microscope (CRM) in a photon reassignment regime (also called re-scan microscopy) can detect sub-diffraction limit LIPSS. SNS generated on a titanium sample irradiated with a [Formula: see text] nm femtosecond UV-laser were characterized with nanostructuring period ranging from 105 to 172 nm. Our label-free, non-destructive optical surface inspection was done at 180 [Formula: see text]m[Formula: see text]/s, and the results are compared with commercial SEM showing the metrological efficiency of our approach.

4.
Sci Rep ; 13(1): 15893, 2023 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741851

RESUMO

Dental implant failure is primarily due to peri-implantitis, a consequence of bacterial biofilm formation. Bacterial adhesion is strongly linked to micro-/nano-topographies of a surface; thus an assessment of surface texture parameters is essential to understand bacterial adhesion. In this study, mirror polished titanium samples (Ti6Al4V) were irradiated with a femtosecond laser (fs-L) at a wavelength of 1030 nm (infrared) with variable laser parameters (laser beam polarization, number, spacing and organization of the impacts). Images of 3-D topographies were obtained by focal variation microscopy and analyzed with MountainsMap software to measure surface parameters. From bacteria associated with peri-implantitis, we selected Porphyromonas gingivalis to evaluate its adhesion on Ti6Al4V surfaces in an in vitro study. Correlations between various surface parameters and P. gingivalis adhesion were investigated. We discovered that Sa value, a common measure of surface roughness, was not sufficient in describing the complexity of these fs-L treated surfaces and their bacterial interaction. We found that Sku, density and mean depths of the furrows, were the most accurate parameters for this purpose. These results provide important information that could help anticipate the bacterial adhesive properties of a surface based on its topographic parameters, thus the development of promising laser designed biofunctional implants.


Assuntos
Implantes Dentários , Peri-Implantite , Humanos , Porphyromonas gingivalis , Propriedades de Superfície , Aderência Bacteriana , Titânio , Aderências Teciduais , Biofilmes
5.
Materials (Basel) ; 16(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36614521

RESUMO

The use of ultrafast cylindrical vector vortex beams in laser-matter interactions permits new ablation features to be harnessed from inhomogeneous distributions of polarization and beam geometry. As a consequence, the ablation process can yield higher ablation efficiency compared with conventional Gaussian beams. These beams prevent surface quality degradation during the ablative processes. When processing stainless steel and titanium, the average surface roughness obtained by deploying the cylindrical vector is up to 94% lower than the Gaussian case, and the processing efficiency is 80% higher.

6.
Nanomaterials (Basel) ; 12(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35630841

RESUMO

Ultrashort pulse lasers have significant advantages over conventional continuous wave and long pulse lasers for the texturing of metallic surfaces, especially for nanoscale surface structure patterning. Furthermore, ultrafast laser beam polarization allows for the precise control of the spatial alignment of nanotextures imprinted on titanium-based implant surfaces. In this article, we report the biological effect of beam polarization on human mesenchymal stem cell differentiation. We created, on polished titanium-6aluminum-4vanadium (Ti-6Al-4V) plates, a laser-induced periodic surface structure (LIPSS) using linear or azimuthal polarization of infrared beams to generate linear or radial LIPSS, respectively. The main difference between the two surfaces was the microstructural anisotropy of the linear LIPSS and the isotropy of the radial LIPSS. At 7 d post seeding, cells on the radial LIPSS surface showed the highest extracellular fibronectin production. At 14 days, qRT-PCR showed on the same surface an increase in osteogenesis-related genes, such as alkaline phosphatase and osterix. At 21 d, mineralization clusters indicative of final osteoinduction were more abundant on the radial LIPSS. Taken together, we identified that creating more isotropic than linear surfaces enhances cell differentiation, resulting in an improved osseointegration. Thus, the fine tuning of ultrashort pulse lasers may be a promising new route for the functionalization of medical implants.

7.
Sci Rep ; 12(1): 2074, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35136107

RESUMO

A highly efficient drilling process is found in non-transparent metallic materials enabled by the use of non-diffractive ultrafast Bessel beams. Applied for deep drilling through a 200 µm-thick steel plate, the Bessel beam demonstrates twofold higher drilling efficiency compared to a Gaussian beam of similar fluence and spot size. Notwithstanding that surface ablation occurs with the same efficiency for both beams, the drilling booster results from a self-replication and reconstruction of the beam along the axis, driven by internal reflections within the crater at quasi-grazing incidence, bypassing potential obstacles. The mechanism is the consequence of an oblique wavevectors geometry with low angular dispersion and generates a propagation length beyond the projection range allowed by the geometry of the channel. With only the main lobe being selected by the channel entrance, side-wall reflection determines the refolding of the lobe on the axis, enhancing and replicating the beam multiple times inside the channel. The process is critically assisted by the reduction of particle shielding enabled by the intrinsic self-healing of the Bessel beam. Thus the drilling process is sustained in a way which is uniquely different from that of the conventional Gaussian beam, the latter being damped within its Rayleigh range. These mechanisms are supported and quantified by Finite Difference Time Domain calculations of the beam propagation. The results show key advantages for the quest towards efficient laser drilling and fabrication processes.

8.
Micromachines (Basel) ; 13(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36557426

RESUMO

The use of ultrafast laser pulses for eye anterior segment surgery has seen a tremendous growth of interest as the technique has revolutionized the field, from the treatment of myopia, hyperopia, and presbyopia in the cornea to laser-assisted cataract surgery of the crystalline lens. For the latter, a comprehensive understanding of the laser-tissue interaction has yet to be achieved, mainly because of the challenge of observing the interaction zone in situ with sufficient spatial and temporal resolution in the complex and multi-layered tissue of the crystalline lens. We report here on the dedicated characterization results of the laser-tissue interaction zone in the ex vivo porcine lens using three different methods: in situ and real-time microscopy, wide-field optical imaging, and phase-contrast microscopy of the histological cross sections. These complementary approaches together revealed new physical and biological consequences of laser irradiation: a low-energy interaction regime (pulse energy below ~1 µJ) with very limited cavitation effects and a stronger photo-disruption regime (pulse energy above 1 µJ) with a long cavitation duration from seconds to minutes, resulting in elongated spots. These advances in the understanding of the ultrafast laser's interactions with the lens are of the utmost importance for the preparation of the next-generation treatments that will be applied to the lens.

9.
Micromachines (Basel) ; 12(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34357214

RESUMO

Femtosecond laser engraving offers appealing advantages compared to regular laser engraving such as higher precision and versatility. In particular, the inscription of deep patterns exhibits an increasing interest in industry. In this work, an optimization protocol based on constraining overlap ratio and scan number is demonstrated. The proposed method allows changing overlap ratio while maintaining depth in the same range, which reduces the sampling number. This study WAS applied to stainless steel 316 L and sapphire for engravings deeper than 100 µm. Results exhibit overall depths higher than threshold values and allowed to determine optimized engraving quality, for instance, roughness in steel can be reduced while maintaining depth and taper angle by reducing overlap ratio. The optimized laser parameters such as roughness and taper angle factors for sapphire were also found to be as follows: 200 kHz, 86% overlap and 12 J/cm2. As a demonstration, a logo engraving is illustrated at the end.

10.
Micromachines (Basel) ; 11(11)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143011

RESUMO

We report the potential use of non-diffractive Bessel beam for ultrafast laser processing in additive manufacturing environments, its integration into a fast scanning platform, and proof-of-concept side-wall polishing of stainless steel-based additively fabricated parts. We demonstrate two key advantages of the zeroth-order Bessel beam: the significantly long non-diffractive length for large tolerance of sample positioning and the unique self-reconstruction property for un-disrupted beam access, despite the obstruction of metallic powders in the additive manufacturing environment. The integration of Bessel beam scanning platform is constructed by finely adapting the Bessel beam into a Galvano scanner. The beam sustained its good profile within the scan field of 35 × 35 mm2. As a proof of concept, the platform showcases its advanced capacity by largely reducing the side-wall surface roughness of an additively as-fabricated workpiece from Ra 10 µm down to 1 µm. Therefore, the demonstrated Bessel-Scanner configuration possesses great potential for integrating in a hybrid additive manufacturing apparatus.

11.
Nanomaterials (Basel) ; 10(5)2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32365835

RESUMO

Femtosecond laser texturing is a promising surface functionalization technology to improve the integration and durability of dental and orthopedic implants. Four different surface topographies were obtained on titanium-6aluminum-4vanadium plates by varying laser processing parameters and strategies: surfaces presenting nanostructures such as laser-induced periodic surface structures (LIPSS) and 'spikes', associated or not with more complex multiscale geometries combining micro-pits, nanostructures and stretches of polished areas. After sterilization by heat treatment, LIPSS and spikes were characterized to be highly hydrophobic, whereas the original polished surfaces remained hydrophilic. Human mesenchymal stem cells (hMSCs) grown on simple nanostructured surfaces were found to spread less with an increased motility (velocity, acceleration, tortuosity), while on the complex surfaces, hMSCs decreased their migration when approaching the micro-pits and preferentially positioned their nucleus inside them. Moreover, focal adhesions of hMSCs were notably located on polished zones rather than on neighboring nanostructured areas where the protein adsorption was lower. All these observations indicated that hMSCs were spatially controlled and mechanically strained by the laser-induced topographies. The nanoscale structures influence surface wettability and protein adsorption and thus influence focal adhesions formation and finally induce shape-based mechanical constraints on cells, known to promote osteogenic differentiation.

12.
Materials (Basel) ; 11(12)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-30518060

RESUMO

A novel additive surface structuring process is devised, which involves localized, intense femtosecond laser irradiation. The irradiation induces a phase explosion of the material being irradiated, and a subsequent ejection of the ablative species that are used as additive building blocks. The ejected species are deposited and accumulated in the vicinity of the ablation site. This redistribution of the material can be repeated and controlled by raster scanning and multiple pulse irradiation. The deposition and accumulation cause the formation of µm-scale three-dimensional structures that surpass the initial surface level. The above-mentioned ablation, deposition, and accumulation all together constitute the proposed additive surface structuring process. In addition, the geometry of the three-dimensional structures can be further modified, if desirable, by a subsequent substractive ablation process. Microstructural analysis reveals a quasi-seamless conjugation between the surface where the structures grow and the structures additively grown by this method, and hence indicates the mechanic robustness of these structures. As a proof of concept, a sub-mm sized re-entrant structure and pillars are fabricated on aluminum substrate by this method. Single units as well as arrayed structures with arbitrary pattern lattice geometry are easily implemented in this additive surface structuring scheme. Engineered surface with desired functionalities can be realized by using this means, i.e., a surface with arrayed pillars being rendered with superhydrophobicity.

13.
ACS Nano ; 10(7): 6995-7007, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27386891

RESUMO

The structural changes generated in surface regions of single crystal Ni targets by femtosecond laser irradiation are investigated experimentally and computationally for laser fluences that, in the multipulse irradiation regime, produce sub-100 nm high spatial frequency surface structures. Detailed experimental characterization of the irradiated targets combining electron back scattered diffraction analysis with high-resolution transmission electron microscopy reveals the presence of multiple nanoscale twinned domains in the irradiated surface regions of single crystal targets with (111) surface orientation. Atomistic- and continuum-level simulations performed for experimental irradiation conditions reproduce the generation of twinned domains and establish the conditions leading to the formation of growth twin boundaries in the course of the fast transient melting and epitaxial regrowth of the surface regions of the irradiated targets. The observation of growth twins in the irradiated Ni(111) targets provides strong evidence of the role of surface melting and resolidification in the formation of high spatial frequency surface structures. This also suggests that the formation of twinned domains can be used as a sensitive measure of the levels of liquid undercooling achieved in short pulse laser processing of metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA