Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Autoimmun ; 124: 102726, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34555678

RESUMO

The ability of regulatory T (Treg) cells to migrate into inflammatory sites is reduced in autoimmune diseases, including rheumatoid arthritis (RA). The reasons for impaired Treg cell migration remain largely unknown. We performed multiplex human kinase activity arrays to explore possible differences in the post-translational phosphorylation status of kinase related proteins that could account for altered Treg cell migration in RA. Results were verified by migration assays and Western blot analysis of CD4+ T cells from RA patients and from mice with collagen type II induced arthritis. Kinome profiling of CD4+ T cells from RA patients revealed significantly altered post-translational phosphorylation of kinase related proteins, including G-protein-signaling modulator 2 (GPSM2), protein tyrosine kinase 6 (PTK6) and vitronectin precursor (VTNC). These proteins have not been associated with RA until now. We found that GPSM2 expression is reduced in CD4+ T cells from RA patients and is significantly downregulated in experimental autoimmune arthritis following immunization of mice with collagen type II. Interestingly, GPSM2 acts as a promoter of Treg cell migration in healthy individuals. Treatment of RA patients with interleukin-6 receptor (IL-6R) blocking antibodies restores GPSM2 expression, thereby improving Treg cell migration. Our study highlights the potential of multiplex kinase activity arrays as a tool for the identification of RA-related proteins which could serve as targets for novel treatments.


Assuntos
Artrite Experimental/imunologia , Artrite Reumatoide/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Bloqueadores/metabolismo , Movimento Celular , Células Cultivadas , Colágeno Tipo II/imunologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos DBA , Fosforilação , Processamento de Proteína Pós-Traducional , Receptores de Interleucina-6/imunologia
2.
BMC Cancer ; 21(1): 719, 2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34147089

RESUMO

BACKGROUND: The aim of this study was to identify sources of variability including patient gender and body surface area (BSA) in pharmacokinetic (PK) exposure for high-dose methotrexate (MTX) continuous infusion in a large cohort of patients with hematological and solid malignancies. METHODS: We conducted a retrospective PK analysis of MTX plasma concentration data from hematological/oncological patients treated at the University Hospital of Cologne between 2005 and 2018. Nonlinear mixed effects modeling was performed. Covariate data on patient demographics and clinical chemistry parameters was incorporated to assess relationships with PK parameters. Simulations were conducted to compare exposure and probability of target attainment (PTA) under BSA adjusted, flat and stratified dosing regimens. RESULTS: Plasma concentration over time data (2182 measurements) from therapeutic drug monitoring from 229 patients was available. PK of MTX were best described by a three-compartment model. Values for clearance (CL) of 4.33 [2.95-5.92] L h- 1 and central volume of distribution of 4.29 [1.81-7.33] L were estimated. An inter-occasion variability of 23.1% (coefficient of variation) and an inter-individual variability of 29.7% were associated to CL, which was 16 [7-25] % lower in women. Serum creatinine, patient age, sex and BSA were significantly related to CL of MTX. Simulations suggested that differences in PTA between flat and BSA-based dosing were marginal, with stratified dosing performing best overall. CONCLUSION: A dosing scheme with doses stratified across BSA quartiles is suggested to optimize target exposure attainment. Influence of patient sex on CL of MTX is present but small in magnitude.


Assuntos
Monitoramento de Medicamentos/métodos , Metotrexato/farmacocinética , Adulto , Idoso , Idoso de 80 Anos ou mais , Superfície Corporal , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
4.
FASEB J ; 32(5): 2735-2746, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29401581

RESUMO

Autosomal-dominant polycystic kidney disease (ADPKD) is associated with progressive formation of renal cysts, kidney enlargement, hypertension, and typically end-stage renal disease. In ADPKD, inherited mutations disrupt function of the polycystins (encoded by PKD1 and PKD2), thus causing loss of a cyst-repressive signal emanating from the renal cilium. Genetic studies have suggested ciliary maintenance is essential for ADPKD pathogenesis. Heat shock protein 90 (HSP90) clients include multiple proteins linked to ciliary maintenance. We determined that ganetespib, a clinical HSP90 inhibitor, inhibited proteasomal repression of NEK8 and the Aurora-A activator trichoplein, rapidly activating Aurora-A kinase and causing ciliary loss in vitro. Using conditional mouse models for ADPKD, we performed long-term (10 or 50 wk) dosing experiments that demonstrated HSP90 inhibition caused durable in vivo loss of cilia, controlled cystic growth, and ameliorated symptoms induced by loss of Pkd1 or Pkd2. Ganetespib efficacy was not increased by combination with 2-deoxy-d-glucose, a glycolysis inhibitor showing some promise for ADPKD. These studies identify a new biologic activity for HSP90 and support a cilia-based mechanism for cyst repression.-Nikonova, A. S., Deneka, A. Y., Kiseleva, A. A., Korobeynikov, V., Gaponova, A., Serebriiskii, I. G., Kopp, M. C., Hensley, H. H., Seeger-Nukpezah, T. N., Somlo, S., Proia, D. A., Golemis, E. A. Ganetespib limits ciliation and cystogenesis in autosomal-dominant polycystic kidney disease (ADPKD).


Assuntos
Rim Policístico Autossômico Dominante/tratamento farmacológico , Triazóis/farmacologia , Animais , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Cílios/genética , Cílios/metabolismo , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Camundongos , Camundongos Knockout , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Desidrogenase Quinase de Transferência de Acetil
5.
Kidney Int ; 93(6): 1308-1319, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29530281

RESUMO

In diseases of many parenchymatous organs, heterogeneous deterioration of individual functional units determines the clinical prognosis. However, the molecular characterization at the level of such individual subunits remains a technological challenge that needs to be addressed in order to better understand pathological mechanisms. Proteinuric glomerular kidney diseases are frequent and assorted diseases affecting a fraction of glomeruli and their draining tubules to variable extents, and for which no specific treatment exists. Here, we developed and applied a mass spectrometry-based methodology to investigate heterogeneity of proteomes from individually isolated nephron segments from mice with proteinuric kidney disease. In single glomeruli from two different mouse models of sclerotic glomerular disease, we identified a coherent protein expression module consisting of extracellular matrix protein deposition (reflecting glomerular sclerosis), glomerular albumin (reflecting proteinuria) and LAMP1, a lysosomal protein. This module was associated with a loss of podocyte marker proteins while genetic ablation of LAMP1-correlated lysosomal proteases could ameliorate glomerular damage in vivo. Furthermore, proteomic analyses of individual glomeruli from patients with genetic sclerotic and non-sclerotic proteinuric diseases revealed increased abundance of lysosomal proteins, in combination with a decreased abundance of mutated gene products. Thus, altered protein homeostasis (proteostasis) is a conserved key mechanism in proteinuric kidney diseases. Moreover, our technology can capture intra-individual variability in diseases of the kidney and other tissues at a sub-biopsy scale.


Assuntos
Glomerulonefrite/metabolismo , Néfrons/metabolismo , Proteinúria/metabolismo , Proteoma , Proteômica/métodos , Espectrometria de Massas em Tandem , Animais , Variação Biológica Individual , Biomarcadores/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Glomerulonefrite/genética , Glomerulonefrite/patologia , Glomerulonefrite/fisiopatologia , Humanos , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Masculino , Camundongos , Camundongos Knockout , Néfrons/patologia , Néfrons/fisiopatologia , Síndrome Nefrótica/genética , Síndrome Nefrótica/metabolismo , Síndrome Nefrótica/patologia , Síndrome Nefrótica/fisiopatologia , Podócitos/metabolismo , Podócitos/patologia , Proteinúria/genética , Proteinúria/patologia , Proteinúria/fisiopatologia , Proteostase , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes , Albumina Sérica/metabolismo , Proteínas WT1
6.
Proc Natl Acad Sci U S A ; 111(35): 12859-64, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25139996

RESUMO

Mutations inactivating the cilia-localized Pkd1 protein result in autosomal dominant polycystic kidney disease (ADPKD), a serious inherited syndrome affecting ∼ 1 in 500 people, in which accumulation of renal cysts eventually destroys kidney function. Severity of ADPKD varies throughout the population, for reasons thought to involve differences both in intragenic Pkd1 mutations and in modifier alleles. The scaffolding protein NEDD9, commonly dysregulated during cancer progression, interacts with Aurora-A (AURKA) kinase to control ciliary resorption, and with Src and other partners to influence proliferative signaling pathways often activated in ADPKD. We here demonstrate Nedd9 expression is deregulated in human ADPKD and a mouse ADPKD model. Although genetic ablation of Nedd9 does not independently influence cystogenesis, constitutive absence of Nedd9 strongly promotes cyst formation in the tamoxifen-inducible Pkd1fl/fl;Cre/Esr1(+) mouse model of ADPKD. This cystogenic effect is associated with striking morphological defects in the cilia of Pkd1(-/-);Nedd9(-/-) mice, associated with specific loss of ciliary localization of adenylase cyclase III in the doubly mutant genotype. Ciliary phenotypes imply a failure of Aurora-A activation: Compatible with this idea, Pkd1(-/-);Nedd9(-/-) mice had ciliary resorption defects, and treatment of Pkd1(-/-) mice with a clinical Aurora-A kinase inhibitor exacerbated cystogenesis. In addition, activation of the ADPKD-associated signaling effectors Src, Erk, and the mTOR effector S6 was enhanced, and Ca(2+) response to external stimuli was reduced, in Pkd1(-/-);Nedd9(-/-) versus Pkd1(-/-) mice. Together, these results indicated an important modifier action of Nedd9 on ADPKD pathogenesis involving failure to activate Aurora-A.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Sinalização do Cálcio/fisiologia , Rim/patologia , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Aurora Quinase A/antagonistas & inibidores , Aurora Quinase A/metabolismo , Cílios/fisiologia , Modelos Animais de Doenças , Células Epiteliais/citologia , Feminino , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Triazóis/farmacologia
7.
EMBO J ; 31(20): 3961-75, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-22909821

RESUMO

Following genotoxic stress, cells activate a complex signalling network to arrest the cell cycle and initiate DNA repair or apoptosis. The tumour suppressor p53 lies at the heart of this DNA damage response. However, it remains incompletely understood, which signalling molecules dictate the choice between these different cellular outcomes. Here, we identify the transcriptional regulator apoptosis-antagonizing transcription factor (AATF)/Che-1 as a critical regulator of the cellular outcome of the p53 response. Upon genotoxic stress, AATF is phosphorylated by the checkpoint kinase MK2. Phosphorylation results in the release of AATF from cytoplasmic MRLC3 and subsequent nuclear translocation where AATF binds to the PUMA, BAX and BAK promoter regions to repress p53-driven expression of these pro-apoptotic genes. In xenograft experiments, mice exhibit a dramatically enhanced response of AATF-depleted tumours following genotoxic chemotherapy with adriamycin. The exogenous expression of a phospho-mimicking AATF point mutant results in marked adriamycin resistance in vivo. Nuclear AATF enrichment appears to be selected for in p53-proficient endometrial cancers. Furthermore, focal copy number gains at the AATF locus in neuroblastoma, which is known to be almost exclusively p53-proficient, correlate with an adverse prognosis and reduced overall survival. These data identify the p38/MK2/AATF signalling module as a critical repressor of p53-driven apoptosis and commend this pathway as a target for DNA damage-sensitizing therapeutic regimens.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/fisiologia , Dano ao DNA/fisiologia , Proteínas Repressoras/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/genética , Pontos de Checagem do Ciclo Celular , Dano ao DNA/genética , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias do Endométrio/genética , Feminino , Amplificação de Genes , Dosagem de Genes , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Complexos Multiproteicos , Cadeias Leves de Miosina/metabolismo , Neuroblastoma/genética , Neuroblastoma/mortalidade , Pressão Osmótica , Fosforilação , Prognóstico , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/genética
8.
Proc Natl Acad Sci U S A ; 110(31): 12786-91, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23858461

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a progressive genetic syndrome with an incidence of 1:500 in the population, arising from inherited mutations in the genes for polycystic kidney disease 1 (PKD1) or polycystic kidney disease 2 (PKD2). Typical onset is in middle age, with gradual replacement of renal tissue with thousands of fluid-filled cysts, resulting in end-stage renal disease requiring dialysis or kidney transplantation. There currently are no approved therapies to slow or cure ADPKD. Mutations in the PKD1 and PKD2 genes abnormally activate multiple signaling proteins and pathways regulating cell proliferation, many of which we observe, through network construction, to be regulated by heat shock protein 90 (HSP90). Inhibiting HSP90 with a small molecule, STA-2842, induces the degradation of many ADPKD-relevant HSP90 client proteins in Pkd1(-/-) primary kidney cells and in vivo. Using a conditional Cre-mediated mouse model to inactivate Pkd1 in vivo, we find that weekly administration of STA-2842 over 10 wk significantly reduces initial formation of renal cysts and kidney growth and slows the progression of these phenotypes in mice with preexisting cysts. These improved disease phenotypes are accompanied by improved indicators of kidney function and reduced expression and activity of HSP90 clients and their effectors, with the degree of inhibition correlating with cystic expansion in individual animals. Pharmacokinetic analysis indicates that HSP90 is overexpressed and HSP90 inhibitors are selectively retained in cystic versus normal kidney tissue, analogous to the situation observed in solid tumors. These results provide an initial justification for evaluating HSP90 inhibitors as therapeutic agents for ADPKD.


Assuntos
Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Rim/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Proteólise , Resorcinóis/metabolismo , Transdução de Sinais , Triazóis/metabolismo , Animais , Cistos/tratamento farmacológico , Cistos/genética , Cistos/metabolismo , Cistos/patologia , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP90/genética , Rim/patologia , Camundongos , Camundongos Knockout , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/patologia , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo
9.
Cell Mol Life Sci ; 70(11): 1849-74, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22782110

RESUMO

The primary cilium protrudes from the cell surface and acts as a sensor for chemical and mechanical growth cues, with receptors for a number of growth factors (PDGFα, Hedgehog, Wnt, Notch) concentrated within the ciliary membrane. In normal tissues, the cilium assembles after cells exit mitosis and is resorbed as part of cell cycle re-entry. Although regulation of the cilium by cell cycle transitions has been appreciated for over 100 years, only recently have data emerged to indicate the cilium also exerts influence on the cell cycle. The resorption/protrusion cycle, regulated by proteins including Aurora-A, VHL, and GSK-3ß, influences cell responsiveness to growth cues involving cilia-linked receptors; further, resorption liberates the ciliary basal body to differentiate into the centrosome, which performs discrete functions in S-, G2-, and M-phase. Besides these roles, the cilium provides a positional cue that regulates polarity of cell division, and thus directs cells towards fates of differentiation versus proliferation. In this review, we summarize the specific mechanisms mediating the cilia-cell cycle dialog. We then emphasize the examples of polycystic kidney disease (PKD), nephronopthisis (NPHP), and VHL-linked renal cysts as cases in which defects of ciliary function influence disease pathology, and may also condition response to treatment.


Assuntos
Ciclo Celular/fisiologia , Cílios/fisiologia , Nefropatias/patologia , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Polaridade Celular , Proliferação de Células , Cílios/metabolismo , Cílios/ultraestrutura , Ensaios Clínicos como Assunto , Nefropatias/tratamento farmacológico , Doenças Renais Císticas/tratamento farmacológico , Doenças Renais Císticas/patologia , Mecanotransdução Celular , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau , Doença de von Hippel-Lindau/tratamento farmacológico , Doença de von Hippel-Lindau/patologia
10.
Drug Discov Today Dis Mech ; 10(3-4): e135-e142, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24982684

RESUMO

The primary cilium is a well-established target in the pathogenesis of numerous developmental and chronic disorders, and more recently is attracting interest as a structure relevant to cancer. Here we discuss mechanisms by which changes in cilia can contribute to the formation and growth of tumors. We emphasize the cancer-relevance of cilia-dependent signaling pathways and proteins including mTOR, VHL, TSC, WNT, Aurora-A, NEDD9, and Hedgehog, and highlight the emerging role of ciliary dysfunction in renal cell carcinoma, medulloblastoma, and breast cancer.

11.
Physiol Rep ; 11(19): e15829, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37771106

RESUMO

The JAK/STAT pathway plays a crucial role in the pathogenesis of rheumatoid arthritis (RA) and JAK inhibitors have emerged as a new group of effective drugs for RA treatment. Recently, high STAT3 levels have been associated with the upregulation of the scaffold protein NEDD9, which is a regulator of T-cell trafficking and promotes collagen-induced arthritis (CIA). In this study, we aimed to reveal how treatment with JAK inhibitors affects NEDD9 in CD4+ T cells from RA patients. We analyzed NEDD9 expression in CD4+ T cells from 50 patients treated with either baricitinib, tofacitinib, or upadacitinib and performed cell migration assays to assess the potential influence of JAK inhibitor treatment on CD4+ T-cell migration. We observed that treatment with baricitinib and upadacitinib is associated with reduced NEDD9 expression in CD4+ T cells. In contrast, NEDD9 levels were not altered during treatment with tofacitinib. Moreover, treatment with baricitinib was associated with a significantly reduced migratory capacity of effector CD4+ T cells but not with impaired migration of Treg cells. This study reveals previously unknown associations between JAK inhibitor treatment and NEDD9 expression and indicates that JAK inhibitors could reduce effector T-cell migration.


Assuntos
Artrite Reumatoide , Inibidores de Janus Quinases , Humanos , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases , Linfócitos T CD4-Positivos/patologia , Transdução de Sinais , Fatores de Transcrição STAT , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Proteínas Adaptadoras de Transdução de Sinal
12.
Leukemia ; 36(7): 1794-1805, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35523865

RESUMO

The scaffold protein NEDD9 is frequently upregulated and hyperphosphorylated in cancers, and is associated with poor clinical outcome. NEDD9 promotes B-cell adhesion, migration and chemotaxis, pivotal processes for malignant development. We show that global or B-cell-specific deletion of Nedd9 in chronic lymphocytic leukemia (CLL) mouse models delayed CLL development, markedly reduced disease burden and resulted in significant survival benefit. NEDD9 was required for efficient CLL cell homing, chemotaxis, migration and adhesion. In CLL patients, peripheral NEDD9 expression was associated with adhesion and migration signatures as well as leukocyte count. Additionally, CLL lymph nodes frequently expressed high NEDD9 levels, with a subset of patients showing NEDD9 expression enriched in the CLL proliferation centers. Blocking activity of prominent NEDD9 effectors, including AURKA and HDAC6, effectively reduced CLL cell migration and chemotaxis. Collectively, our study provides evidence for a functional role of NEDD9 in CLL pathogenesis that involves intrinsic defects in adhesion, migration and homing.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Leucemia Linfocítica Crônica de Células B , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Aurora Quinase A , Movimento Celular , Modelos Animais de Doenças , Progressão da Doença , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos
13.
Cancers (Basel) ; 12(7)2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698538

RESUMO

The Eµ-TCL1 transgenic mouse model represents the most widely and extensively used animal model for chronic lymphocytic leukemia (CLL). In this report, we performed a meta-analysis of leukemia progression in over 300 individual Eµ-TCL1 transgenic mice and discovered a significantly accelerated disease progression in females compared to males. This difference is also reflected in an aggressive CLL mouse model with additional deletion of Tp53 besides the TCL1 transgene. Moreover, after serial adoptive transplantation of murine CLL cells, female recipients also succumbed to CLL earlier than male recipients. This sex-related disparity in the murine models is markedly contradictory to the human CLL condition. Thus, due to our observation we urge both careful consideration in the experimental design and accurate description of the Eµ-TCL1 transgenic cohorts in future studies.

14.
Cancers (Basel) ; 12(8)2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32824276

RESUMO

Targeted inhibition of Bruton's Tyrosine Kinase (BTK) with ibrutinib and other agents has become important treatment options in chronic lymphocytic leukemia, Waldenström's Macroglobulinemia, Mantle cell lymphoma, and non-GCB DLBCL. Clinical trials combining small molecule inhibitors with monoclonal antibodies have been initiated at rapid pace, with the biological understanding between their synergistic interactions lagging behind. Here, we have evaluated the synergy between BTK inhibitors and monoclonal antibody therapy via macrophage mediated antibody dependent cellular phagocytosis (ADCP). Initially, we observed increased ADCP with ibrutinib, whilst second generation BTK inhibitors failed to synergistically interact with monoclonal antibody treatment. Kinase activity profiling under BTK inhibition identified significant loss of Janus Kinase 2 (JAK2) only under ibrutinib treatment. We validated this potential off-target effect via JAK inhibition in vitro as well as with CRISPR/Cas9 JAK2-/- experiments in vivo, showing increased ADCP and prolonged survival, respectively. This data supports inhibition of the JAK-STAT (Signal Transducers and Activators of Transcription) signaling pathway in B-cell malignancies in combination with monoclonal antibody therapy to increase macrophage-mediated immune responses.

15.
Physiol Rep ; 7(21): e14229, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31724834

RESUMO

Organic anion transporter 1 (OAT1) is a polyspecific transport protein located in the basolateral membrane of renal proximal tubule cells. OAT1 plays a pivotal role in drug clearance. Adverse drug reactions (ADR) are observed more frequently in women than in men, especially ADR are higher in women for drugs which are known interactors of OAT1. Sex-dependent expression of Oat1 has been observed in rodents with a tendency to male-dominant expression. This study aims at elucidating the transcriptional regulation of human OAT1 and tests the effect of estrogen receptor α (ERα). Promoter activation of OAT1 was assessed by luciferase assays carried out by Opossum kidney (OK) cells, transiently transfected with promoter constructs of human OAT1 and expression vectors for ERα and exposed to 100 nmol/L 17ß-estradiol. Furthermore, a transcription factor array and proteomic analysis was performed to identify estrogen-induced transcription factors. Human OAT1 was significantly activated by ligand activated ERα. However, activation occurred without a direct interaction of ERα with the OAT1 promoter. Our data rather show an activation of the transcription factors CCAAT-box-binding transcription factor (CBF) and heterogeneous nuclear ribonucleoprotein K (HNRNPK) by ERα, which in turn bind and initiate OAT1 promoter activity. Herewith, we provide novel evidence of estrogen-dependent, transcriptional regulation of polyspecific drug transporters including the estrogen-induced transcription factors CBF and HNRNPK.


Assuntos
Receptor alfa de Estrogênio/genética , Regulação da Expressão Gênica , Proteína 1 Transportadora de Ânions Orgânicos/genética , Transcrição Gênica , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Células Cultivadas , Estradiol/administração & dosagem , Feminino , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/genética , Humanos , Masculino , Gambás , Regiões Promotoras Genéticas , Proteômica
16.
Nat Commun ; 10(1): 2130, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086178

RESUMO

Hypoxia signaling plays a major role in non-malignant and malignant hyperproliferative diseases. Pulmonary hypertension (PH), a hypoxia-driven vascular disease, is characterized by a glycolytic switch similar to the Warburg effect in cancer. Ras association domain family 1A (RASSF1A) is a scaffold protein that acts as a tumour suppressor. Here we show that hypoxia promotes stabilization of RASSF1A through NOX-1- and protein kinase C- dependent phosphorylation. In parallel, hypoxia inducible factor-1 α (HIF-1α) activates RASSF1A transcription via HIF-binding sites in the RASSF1A promoter region. Vice versa, RASSF1A binds to HIF-1α, blocks its prolyl-hydroxylation and proteasomal degradation, and thus enhances the activation of the glycolytic switch. We find that this mechanism operates in experimental hypoxia-induced PH, which is blocked in RASSF1A knockout mice, in human primary PH vascular cells, and in a subset of human lung cancer cells. We conclude that RASSF1A-HIF-1α forms a feedforward loop driving hypoxia signaling in PH and cancer.


Assuntos
Hipóxia Celular , Hipertensão Pulmonar/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Modelos Animais de Doenças , Glicólise , Células HEK293 , Células HeLa , Humanos , Hipertensão Pulmonar/cirurgia , Pulmão/irrigação sanguínea , Pulmão/patologia , Pulmão/cirurgia , Masculino , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso , NADPH Oxidase 1/metabolismo , Cultura Primária de Células , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteína Quinase C/metabolismo , Proteólise , Artéria Pulmonar/citologia , Transdução de Sinais , Proteínas Supressoras de Tumor/genética
17.
Nat Rev Nephrol ; 11(9): 515-34, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25870008

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is a progressive inherited disorder in which renal tissue is gradually replaced with fluid-filled cysts, giving rise to chronic kidney disease (CKD) and progressive loss of renal function. ADPKD is also associated with liver ductal cysts, hypertension, chronic pain and extra-renal problems such as cerebral aneurysms. Intriguingly, improved understanding of the signalling and pathological derangements characteristic of ADPKD has revealed marked similarities to those of solid tumours, even though the gross presentation of tumours and the greater morbidity and mortality associated with tumour invasion and metastasis would initially suggest entirely different disease processes. The commonalities between ADPKD and cancer are provocative, particularly in the context of recent preclinical and clinical studies of ADPKD that have shown promise with drugs that were originally developed for cancer. The potential therapeutic benefit of such repurposing has led us to review in detail the pathological features of ADPKD through the lens of the defined, classic hallmarks of cancer. In addition, we have evaluated features typical of ADPKD, and determined whether evidence supports the presence of such features in cancer cells. This analysis, which places pathological processes in the context of defined signalling pathways and approved signalling inhibitors, highlights potential avenues for further research and therapeutic exploitation in both diseases.


Assuntos
Neoplasias Renais/patologia , Rim Policístico Autossômico Dominante/patologia , Animais , Carcinoma de Células Renais/patologia , Morte Celular , Humanos , Neoplasias Renais/genética , Rim Policístico Autossômico Dominante/etiologia , Rim Policístico Autossômico Dominante/genética , Transdução de Sinais , Evasão Tumoral
18.
PLoS One ; 9(12): e114403, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25474361

RESUMO

Polycystic liver disease (PLD) occurs in 75-90% of patients affected by autosomal dominant polycystic kidney disease (ADPKD), which affects 1∶400-1,000 adults and arises from inherited mutations in the PKD1 or PKD2 genes. PLD can lead to bile duct obstructions, infected or bleeding cysts, and hepatomegaly, which can diminish quality of life. At present, no effective, approved therapy exists for ADPKD or PLD. We recently showed that inhibition of the molecular chaperone heat shock protein 90 (HSP90) with a small molecule inhibitor, STA-2842, induced the degradation of multiple HSP90-dependent client proteins that contribute to ADPKD pathogenesis and slowed the progression of renal cystogenesis in mice with conditional deletion of Pkd1. Here, we analyzed the effects of STA-2842 on liver size and cystic burden in Pkd-/- mice with established PLD. Using magnetic resonance imaging over time, we demonstrate that ten weeks of STA-2842 treatment significantly reduced both liver mass and cystic index suggesting selective elimination of cystic tissue. Pre-treatment cystic epithelia contain abundant HSP90; the degree of reduction in cysts was accompanied by inhibition of proliferation-associated signaling proteins EGFR and others, and induced cleavage of caspase 8 and PARP1, and correlated with degree of HSP90 inhibition and with inactivation of ERK1/2. Our results suggest that HSP90 inhibition is worth further evaluation as a therapeutic approach for patients with PLD.


Assuntos
Cistos/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Hepatopatias/tratamento farmacológico , Proteína Quinase C/genética , Resorcinóis/farmacologia , Triazóis/farmacologia , Animais , Cistos/genética , Feminino , Técnicas de Inativação de Genes , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Hepatopatias/genética , Masculino , Camundongos Knockout , Proteína Quinase C/metabolismo , Resorcinóis/uso terapêutico , Triazóis/uso terapêutico
19.
Curr Opin Cell Biol ; 24(5): 652-61, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22819513

RESUMO

The primary cilium protrudes like an antenna from the cell surface, sensing mechanical and chemical cues provided in the cellular environment. In some tissue types, ciliary orientation to lumens allows response to fluid flow; in others, such as bone, ciliary protrusion into the extracellular matrix allows response to compression forces. The ciliary membrane contains receptors for Hedgehog, Wnt, Notch, and other potent growth factors, and in some instances also harbors integrin and cadherin family members, allowing receipt of a robust range of signals. A growing list of ciliopathies, arising from deficient formation or function of cilia, includes both developmental defects and chronic, progressive disorders such as polycystic kidney disease (PKD); changes in ciliary function have been proposed to support cancer progression. Recent findings have revealed extensive signaling dialog between cilia and extracellular matrix (ECM), with defects in cilia associated with fibrosis in multiple contexts. Further, a growing number of proteins have been determined to possess multiple roles in control of cilia and focal adhesion interactions with the ECM, further coordinating functionality. We summarize and discuss these recent findings.


Assuntos
Cílios/metabolismo , Matriz Extracelular/metabolismo , Transdução de Sinais/fisiologia , Animais , Adesão Celular , Cílios/patologia , Humanos , Proteínas de Membrana/metabolismo , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo
20.
PLoS One ; 7(6): e38838, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701722

RESUMO

Polo-like kinase (Plk1) plays a central role in regulating the cell cycle. Plk1-mediated phosphorylation is essential for centrosome maturation, and for numerous mitotic events. Although Plk1 localizes to multiple subcellular sites, a major site of action is the centrosomes, which supports mitotic functions in control of bipolar spindle formation. In G0 or G1 untransformed cells, the centriolar core of the centrosome differentiates into the basal body of the primary cilium. Primary cilia are antenna-like sensory organelles dynamically regulated during the cell cycle. Whether Plk1 has a role in ciliary biology has never been studied. Nephrocystin-1 (NPHP1) is a ciliary protein; loss of NPHP1 in humans causes nephronophthisis (NPH), an autosomal-recessive cystic kidney disease. We here demonstrate that Plk1 colocalizes with nephrocystin-1 to the transition zone of primary cilia in epithelial cells. Plk1 co-immunoprecipitates with NPHP1, suggesting it is part of the nephrocystin protein complex. We identified a candidate Plk1 phosphorylation motif (D/E-X-S/T-φ-X-D/E) in nephrocystin-1, and demonstrated in vitro that Plk1 phosphorylates the nephrocystin N-terminus, which includes the specific PLK1 phosphorylation motif. Further, induced disassembly of primary cilia rapidly evoked Plk1 kinase activity, while small molecule inhibition of Plk1 activity or RNAi-mediated downregulation of Plk1 limited the first and second phase of ciliary disassembly. These data identify Plk1 as a novel transition zone signaling protein, suggest a function of Plk1 in cilia dynamics, and link Plk1 to the pathogenesis of NPH and potentially other cystic kidney diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Cílios/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Western Blotting , Cromatografia Líquida , Proteínas do Citoesqueleto , Primers do DNA/genética , Células HEK293 , Humanos , Imunoprecipitação , Microscopia de Fluorescência , Fosforilação , Interferência de RNA , RNA Interferente Pequeno/genética , Espectrometria de Massas em Tandem , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA