Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomedicines ; 10(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35740241

RESUMO

The chemical exchange saturation transfer (CEST) signal at -1.6 ppm is attributed to the choline methyl on phosphatidylcholines and results from the relayed nuclear Overhauser effect (rNOE), that is, rNOE(-1.6). The formation of rNOE(-1.6) involving the cholesterol hydroxyl is shown in liposome models. We aimed to confirm the correlation between cholesterol content and rNOE(-1.6) in cell cultures, tissues, and animals. C57BL/6 mice (N = 9) bearing the C6 glioma tumor were imaged in a 7 T MRI scanner, and their rNOE(-1.6) images were cross-validated through cholesterol staining with filipin. Cholesterol quantification was obtained using an 18.8-T NMR spectrometer from the lipid extracts of the brain tissues from another group of mice (N = 3). The cholesterol content in the cultured cells was manipulated using methyl-ß-cyclodextrin and a complex of cholesterol and methyl-ß-cyclodextrin. The rNOE(-1.6) of the cell homogenates and their cholesterol levels were measured using a 9.4-T NMR spectrometer. The rNOE(-1.6) signal is hypointense in the C6 tumors of mice, which matches the filipin staining results, suggesting that their tumor region is cholesterol deficient. The tissue extracts also indicate less cholesterol and phosphatidylcholine contents in tumors than in normal brain tissues. The amplitude of rNOE(-1.6) is positively correlated with the cholesterol concentration in the cholesterol-manipulated cell cultures. Our results indicate that the cholesterol dependence of rNOE(-1.6) occurs in cell cultures and solid tumors of C6 glioma. Furthermore, when the concentration of phosphatidylcholine is carefully considered, rNOE(-1.6) can be developed as a cholesterol-weighted imaging technique.

2.
Biomedicines ; 9(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34680576

RESUMO

We developed a new probe, Gd-DO3A-Am-PBA, for imaging tumors. Our results showed active targeting of Gd-DO3A-Am-PBA to sialic acid (SA) moieties, with increased cellular labeling in vitro and enhanced tumor accumulation and retention in vivo, compared to the commercial Gadovist. The effectiveness of our newly synthesized probe lies in its adequate retention phase, which is expected to provide a suitable time window for tumor diagnosis and a faster renal clearance, which will reduce toxicity risks when translated to clinics. Hence, this study can be extended to other tumor types that express SA on their surface. Targeting and MR imaging of any type of tumors can also be achieved by conjugating the newly synthesized contrast agent with specific antibodies. This study thus opens new avenues for drug delivery and tumor diagnosis via imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA