RESUMO
Deserts are the most frequent locations of terrestrial crude oil contaminations. Nevertheless, the long-term effects of petroleum hydrocarbons on desert ecosystems are still unknown, which makes risk assessment and decision making concerning remediation difficult. This study examined the long-term effects of petroleum hydrocarbons on perennial desert vegetation. The study site was a hyper-arid area in the south of Israel, which was contaminated by a crude oil spill in 1975. The contaminated area was compared to uncontaminated reference areas. The composition of perennial plants 40 yr after the oil spill was not significantly affected by the contamination. However, the size distribution of the two most dominant shrub species, Baker and (Moq.) Iljin., and the only tree species, Savi and (Forssk.) Hayne, were different from the reference. These differences can be explained by decreased recruitment. The estimated recruitment of in the last 40 yr post oil spill was 74% less than recruitment in the reference area. Low recruitment of may in the future lead to the loss of tree cover, which would change the entire ecosystem, as are keystone species on which a number of microorganisms, plants, and animals rely. Remediation of oil spills and preventative measures are recommended.
Assuntos
Ecossistema , Poluição por Petróleo , Plantas , Animais , Hidrocarbonetos , PetróleoRESUMO
Introduction: Soil water availability is a key factor in the growth of trees. In arid deserts, tree growth is limited by very dry soil and atmosphere conditions. Acacia tree species are distributed in the most arid deserts of the globe, therefore they are well adapted to heat and long droughts. Understanding why some plants do better than others in some environments is a key question in plant science. Methods: Here we conducted a greenhouse experiment to continuously and simultaneously track the whole-plant water-balance of two desert Acacia species, in order to unravel their physiological responses to low water availability. Results: We found that even under volumetric water content (VWC) of 5-9% in the soil, both species maintained 25% of the control plants, with a peak of canopy activity at noon. Moreover, plants exposed to the low water availability treatment continued growing in this period. A. tortilis applied a more opportunistic strategy than A. raddiana, and showed stomatal responses at a lower VWC (9.8% vs. 13.1%, t4= -4.23, p = 0.006), 2.2-fold higher growth, and faster recovery from drought stress. Discussion: Although the experiment was done in milder VPD (~3 kPa) compared to the natural conditions in the field (~5 kPa), the different physiological responses to drought between the two species might explain their different topographic distributions. A. tortilis is more abundant in elevated locations with larger fluctuations in water availability while A. raddiana is more abundant in the main channels with higher and less fluctuating water availability. This work shows a unique and non-trivial water-spending strategy in two Acacia species adapted to hyper-arid conditions.
RESUMO
Deserts are characterized by unpredictable precipitation and extreme temperatures. Their fauna and flora are sensitive to anthropogenic environmental changes, and often recover slowly from environmental disasters. The effects of oil spills on the biota of desert regions, however, have scarcely been studied. We predicted that terrestrial invertebrates suffer long-term negative effects from an oil spill, due to their close association with the substrate. Thus, we investigated the effects of two oil spills that occurred in 1975 and 2014 in the hyper-arid 'Arava desert (Israel), on a spider that constructs silk-lined nests in burrows in compact, sandy soil in this extreme desert habitat. The spider, Sahastata aravaensis sp. nov. (Filistatidae), is described herein. We assessed spider burrow abundance in plots located in oil-contaminated and nearby uncontaminated clean soil (control) areas over five consecutive years and measured habitat characteristics in these plots. In the laboratory, we determined the preference of individuals for clean vs. oil-contaminated soil as a resting substrate. Finally, as this species was previously undescribed, we added a new species description. The abundance of Sahastata was significantly lower in oil-contaminated plots, and this was the case in the 40-year-old oil spill (1975) as well as in the recent one (2014). In laboratory tests, spiders showed a significant preference for the clean soil substrate over the oil-contaminated substrate. In the field, soil crust hardness and vegetation density did not differ significantly between oil-contaminated and control plots, but these measures were highly variable. The burrows were significantly clustered, suggesting that the young disperse only short distances. In the laboratory adult spiders did not dig burrows, perhaps indicating that adults remain permanently in their natal burrows and that in the field they may use vacant burrows. We conclude that Sahastata populations were affected negatively by the oil spills and these effects were long-lasting. We propose that by monitoring their spatial distribution, burrow-dwelling spiders such as Sahastata can be used as effective bioindicators of soil pollution in desert habitats.
RESUMO
Species of Hoodia Sweet ex Decne., family Apocynaceae, a southern African succulent plant, have been recognized for their appetite suppressing properties. Products that support appetite and weight control have been developed in Israel from locally cultivated Hoodia spp. To study consumer acceptance, efficacy of, and tolerance for a frozen product based on whole aerial parts of Hoodia parviflora N.E. Br., we initiated and conducted this single-blind, randomized, placebo-controlled consumer trial. Volunteer participants ingested flavored 3 g frozen Hoodia or placebo cubes for 40 days. Subjects were weighed and measured and baseline body-mass index was determined. Adverse events were monitored and eight mild, transient, possible treatment-emergent events were reported. No moderate, severe, or chronic events were reported. On days 1, 10, and 40, subjects self-reported their perceptions of food consumption, hunger development, incidence and control of food cravings, and efficacy of the product. On day 40, the treatment group demonstrated a statistically significant decrease in measured quantitative parameters against the placebo and reported a positive perception of the product.