Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
BMC Biotechnol ; 24(1): 38, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831403

RESUMO

BACKGROUND: Antibiotic-containing carrier systems are one option that offers the advantage of releasing active ingredients over a longer period of time. In vitro sustained drug release from a carrier system consisting of microporous ß-TCP ceramic and alginate has been reported in previous works. Alginate dialdehyde (ADA) gelatin gel showed both better mechanical properties when loaded into a ß-TCP ceramic and higher biodegradability than pure alginate. METHODS: Dual release of daptomycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21, and 28 by HPLC and ELISA. After release, the microbial efficacy of the daptomycin was verified and the biocompatibility of the composite was tested in cell culture. RESULTS: Daptomycin and the model compound FITC protein A (n = 30) were released from the composite over 28 days. A Daptomycin release above the minimum inhibitory concentration (MIC) by day 9 and a burst release of 71.7 ± 5.9% were observed in the loaded ceramics. Low concentrations of BMP-2 were released from the loaded ceramics over 28 days.


Assuntos
Antibacterianos , Proteína Morfogenética Óssea 2 , Fosfatos de Cálcio , Cerâmica , Daptomicina , Gelatina , Proteína Morfogenética Óssea 2/química , Proteína Morfogenética Óssea 2/metabolismo , Daptomicina/química , Daptomicina/farmacologia , Gelatina/química , Cerâmica/química , Antibacterianos/química , Antibacterianos/farmacologia , Fosfatos de Cálcio/química , Animais , Testes de Sensibilidade Microbiana , Camundongos , Portadores de Fármacos/química , Liberação Controlada de Fármacos
2.
BMC Biotechnol ; 24(1): 32, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750469

RESUMO

ß-TCP ceramics are versatile bone substitute materials and show many interactions with cells of the monocyte-macrophage-lineage. The possibility of monocytes entering microporous ß-TCP ceramics has however not yet been researched. In this study, we used a model approach to investigate whether monocytes might enter ß-TCP, providing a possible explanation for the origin of CD68-positive osteoclast-like giant cells found in earlier works.We used flow chambers to unidirectionally load BC, PRP, or PPP into slice models of either 2 mm or 6 mm ß-TCP. Immunofluorescence for CD68 and live/dead staining was performed after the loading process.Our results show that monocytes were present in a relevant number of PRP and BC slices representing the inside of our 2 mm slice model and also present on the actual inside of our 6 mm model. For PPP, monocytes were not found beyond the surface in either model.Our results indicate the possibility of a new and so far neglected constituent in ß-TCP degradation, perhaps causing the process of ceramic degradation also starting from inside the ceramics as opposed to the current understanding. We also demonstrated flow chambers as a possible new in vitro model for interactions between blood and ß-TCP.


Assuntos
Fosfatos de Cálcio , Cerâmica , Monócitos , Monócitos/citologia , Cerâmica/química , Fosfatos de Cálcio/química , Humanos , Substitutos Ósseos/química , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Porosidade
3.
J Mater Sci Mater Med ; 34(8): 39, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498466

RESUMO

The aim of this study was to produce a composite of microporous ß-TCP filled with alginate-gelatin crosslinked hydrogel, clindamycin and bone morphogenetic protein (BMP-2) to prolong the drug-release behaviour for up to 28 days. The most promising alginate-di-aldehyde(ADA)-gelatin gel for drug release from microcapsules was used to fill microporous ß-TCP ceramics under directional flow in a special loading chamber. Dual release of clindamycin and BMP-2 was measured on days 1, 2, 3, 6, 9, 14, 21 and 28 by high performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA). After release, the microbial efficacy of the clindamycin was checked and the biocompatibility of the composite was tested in cell culture. Clindamycin and the model substance FITC-protein A were released from microcapsules over 28 days. The clindamycin burst release was 43 ± 1%. For the loaded ceramics, a clindamycin release above the minimal inhibitory concentration (MIC) until day 9 and a burst release of 90.56 ± 2.96% were detected. BMP-2 was released from the loaded ceramics in low concentrations over 28 days. The release of active substances from ß-TCP and hydrogel have already been extensively studied. Directional flow loading is a special procedure in which the ceramic could act as a stabilizer in the bone and, as a biodegradable system, enables a single-stage surgical procedure. Whether ADA-gelatin gel is suitable for this procedure as a more biodegradable alternative to pure alginate or whether a dual release is possible in this composite has not yet been investigated.


Assuntos
Proteína Morfogenética Óssea 2 , Clindamicina , Alginatos/química , Proteína Morfogenética Óssea 2/química , Cápsulas , Cerâmica/química , Gelatina/química , Hidrogéis/química , Humanos , Animais
4.
Arch Orthop Trauma Surg ; 143(11): 6719-6729, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37592159

RESUMO

PURPOSE: The ambition of the research group was to develop a sensor-based system that allowed the transfer of results with strain sensors applied to the knee joint. This system was to be validated in comparison to the current static mechanical measurement system. For this purpose, the internal rotation laxity of the knee joint was measured, as it is relevant for anterolateral knee laxity and anterior cruciate ligament (ACL) injury. METHODS: This is a noninvasive measurement method using strain sensors which are applied to the skin in the course of the anterolateral ligament. The subjects were placed in supine position. First the left and then the right leg were clinically examined sequentially and documented by means of an examination form. 11 subjects aged 21 to 45 years, 5 women and 6 men were examined. Internal rotation of the lower leg was performed with a torque of 2 Nm at a knee flexion angle of 30°. RESULTS: Comparison of correlation between length change and internal knee rotation angle showed a strong positive correlation (r = 1, p < 0.01). Whereas females showed a significant higher laxity vs. males (p = 0.003). CONCLUSIONS: The present study showed that the capacitive strain sensors can be used for reproducible measurement of anterolateral knee laxity. In contrast to the previous static systems, a dynamic measurement will be possible by this method in the future.


Assuntos
Lesões do Ligamento Cruzado Anterior , Instabilidade Articular , Masculino , Humanos , Feminino , Amplitude de Movimento Articular , Cadáver , Instabilidade Articular/diagnóstico , Fenômenos Biomecânicos , Articulação do Joelho , Lesões do Ligamento Cruzado Anterior/diagnóstico
5.
BMC Biotechnol ; 16(1): 44, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27206764

RESUMO

BACKGROUND: Tissue engineering and bone substitutes are subjects of intensive ongoing research. If the healing of bone fractures is delayed, osteoinductive materials that induce mesenchymal stem cells (MSCs) to form bone are necessary. The use of Bone Morphogenetic Protein - 2 is a common means to enhance effectiveness and accelerate the healing process. A delivery system that maintains and releases BMP biological activity in controlled fashion at the surgical site while preventing systemic diffusion (and thereby the risk of undesirable effects by controlling the amount of protein implanted) is essential. In this study, we aimed to test a cylindrical TCP-scaffold (porosity ~ 40 %, mean pore size 5 µm, high interconnectivity) in comparison to BMP-2. Recombinant human BMP-2 was dissolved in different hydrogels as a carrier, namely gelatin and alginate cross-linked with CaCl2-solution, or a solution of GDL and CaCO3. FITC-labeled Protein A was used as a model substance for rhBMP-2 in the pre-trials. For loading, the samples were put in a flow chamber and sealed with silicone rings. Using a directional vacuum, the samples were loaded with the alginate-BMP-2-mixture and the loading success monitored by observing changes in a fluorescent dye (FITC labeled Protein A) under a fluorescence microscope. A fluorescence reader and ELISA were employed to measure the release. Efficacy was determined in cell culture experiments (MG63 cells) via Live-Dead-Assay, FACS, WST-1-Assay, pNPP alkaline phosphatase assay and confocal microscopy. For statistical analysis, we calculated the mean and standard deviation and carried out an analysis of variance. RESULTS: Directional vacuum makes it possible to load nearly 100 % of the interconnected micropores with alginate mixed with rhBMP-2. Using alginate hardened with CaCl2 as a carrier, BMP-2's release can be decelerated significantly longer than with other hydrogels - eg, for over 28 days. The effects on osteoblast-like cells were an increase of the growth rate and expression of alkaline phosphatase while triggering no toxic effect. CONCLUSION: The rhBMP-2-loaded microporous TCP scaffolds possess proliferative and osteoinductive potential. Alginate helps to lower the local growth factor dose below the cytotoxic limit, and allows the release period to be lengthened by at least 28 days.


Assuntos
Proteína Morfogenética Óssea 2/administração & dosagem , Fosfatos de Cálcio/química , Preparações de Ação Retardada/química , Hidrogéis/química , Osteoblastos/fisiologia , Alicerces Teciduais , Fator de Crescimento Transformador beta/administração & dosagem , Proteína Morfogenética Óssea 2/química , Substitutos Ósseos/síntese química , Linhagem Celular , Preparações de Ação Retardada/administração & dosagem , Difusão , Desenho de Equipamento , Humanos , Teste de Materiais , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Porosidade , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Fator de Crescimento Transformador beta/química
6.
BMC Res Notes ; 17(1): 122, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685087

RESUMO

Fluorescence analysis of ß-TCP ceramics is often used to describe cells found on said ceramics. However, we found, to our knowledge, so far undescribed artifacts which might sometimes be hard to differentiate from cells due to shape and fluorescence behavior. We tried prolonged ultrasound washing as well as Technovit 9100 fixation to reduce these artifacts. While untreated dowels showed no reduction in artifacts no matter the further treatment, Technovit fixation reduced the artifacts with even further reduction achieved by mechanical cleaning. As a consequence, scientists working with these dowels and likely even other types should try to avoid creating false positive results by considering the existence of these artifacts, checking additional filters for unusual fluorescence and by reducing them by using Technovit fixation when possible.


Assuntos
Artefatos , Fosfatos de Cálcio , Microscopia de Fluorescência , Microscopia de Fluorescência/métodos , Fosfatos de Cálcio/química , Humanos , Cerâmica/química
7.
J Funct Biomater ; 15(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38391881

RESUMO

Osteosynthesis in fracture treatment typically uses hardware that remains in the patient's body, which brings a permanent risk of negative side effects such as foreign body reactions or chronic inflammation. Bioabsorbable materials, however, can degrade and slowly be replaced by autologous bone tissue. A suitable material is requested to offer great biocompatibility alongside excellent mechanical properties and a reasonable corrosion rate. Zinc-silver alloys provide these characteristics, which makes them a promising candidate for research. This study investigated the aptitude as a bioabsorbable implant of a novel zinc-silver alloy containing 3.3 wt% silver (ZnAg3). Here, the tensile strength as well as the corrosion rate in PBS solution (phosphate buffered solution) of ZnAg3 were assessed. Furthermore, shear tests, including fatigue and quasi-static testing, were conducted with ZnAg3 and magnesium pins (MAGNEZIX®, Syntellix AG, Hannover, Germany), which are already in clinical use. The detected corrosion rate of 0.10 mm/year for ZnAg3 was within the proposed range for bioabsorbable implants. With a tensile strength of 237.5 ± 2.12 MPa and a shear strength of 144.8 ± 13.2 N, ZnAg3 satisfied the mechanical requirements for bioabsorbable implants. The fatigue testing did not show any significant difference between ZnAg3 and magnesium pins, whereas both materials withstood the cyclic loading. Thus, the results support the assumption that ZnAg3 is qualified for further investigation.

8.
Front Bioeng Biotechnol ; 12: 1364536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707504

RESUMO

This study was designed to provide information on how the menisci change over the course of osteoarthritis, particularly with regard to their mechanical properties. The aim was to determine the difference between healthy menisci (fresh frozen meniscal transplants) and menisci harvested during total knee arthroplasty. The latter allows the grading of age-related and osteoarthritic changes in the menisci on macroscopic and microscopic levels. A total of 10 menisci from arthritic knee joints (medial) harvested during total knee arthroplasty were used and compared with 10 medial fresh frozen meniscal transplants. The mechanical measurements were carried out on a Mach-1 testing machine using indentation testing to determine the instantaneous modulus and the thickness of the menisci. The specimens were then embedded in paraffin, sectioned on a microtome, and stained with hematoxylin-eosin and safranin-O. All measurements were divided into the anterior horn, pars intermedia, and posterior horn. There was no significant difference in the instantaneous modulus for the posterior horn in the fresh frozen menisci with 0.27 ± 0.1 MPa compared to the arthritic menisci with 0.18 ± 0.03 MPa. No significant difference could be determined for the meniscus thicknesses. There was a significant difference in the safranin-O staining. There were also significant differences in the Pauli score: the arthrosis menisci showed a sum score that was, on average, four times higher than the sum score of the fresh frozen menisci. In the present study, it could be shown very well that there are significant differences in the mechanical properties as well as in the macroscopic and histopathological scores, such as the Pauli score, between the fresh frozen meniscus allografts considered healthy and osteoarthritic menisci resulting from total knee arthroplasty. With a degradation score of 3 (Pauli), the instantaneous modulus was reduced by more than 50% compared to healthy controls. More importantly, however, the fresh frozen menisci only show a grade 2 when converting the sum values into grades, where a grade 2 indicates slight degeneration. This is interesting because fresh frozen meniscus transplants were always considered healthy in previous publications and should, therefore, actually have a grade 1.

9.
Life (Basel) ; 14(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276271

RESUMO

With the conventional mechanical rotation measurement of joints, only static measurements are possible with the patient at rest. In the future, it would be interesting to carry out dynamic rotation measurements, for example, when walking or participating in sports. Therefore, a measurement method with an elastic polymer-based capacitive measuring system was developed and validated. In our system, the measurement setup was comprised of a capacitive strain gauge made from a polymer, which was connected to a flexible printed circuit board. The electronics integrated into the printed circuit board allowed data acquisition and transmission. As the sensor strip was elongated, it caused a change in the spacing between the strain gauge's electrodes, leading to a modification in capacitance. Consequently, this alteration in capacitance enabled the measurement of strain. The measurement system was affixed to the knee by adhering the sensor to the skin in alignment with the anterolateral ligament (ALL), allowing the lower part of the sensor (made of silicone) and the circuit board to be in direct contact with the knee's surface. It is important to note that the sensor should be attached without any prior stretching. To validate the system, an in vivo test was conducted on 10 healthy volunteers. The dorsiflexion of the ankle was set at 2 Nm using a torque meter to eliminate any rotational laxity in the ankle. A strain gauge sensor was affixed to the Gerdii's tubercle along the course of the anterolateral ligament, just beneath the lateral epicondyle of the thigh. In three successive measurements, the internal rotation of the foot and, consequently, the lower leg was quantified with a 2 Nm torque. The alteration in the stretch mark's length was then compared to the measured internal rotation angle using the static measuring device. A statistically significant difference between genders emerged in the internal rotation range of the knee (p = 0.003), with female participants displaying a greater range of rotation compared to their male counterparts. The polymer-based capacitive strain gauge exhibited consistent linearity across all measurements, remaining within the sensor's initial 20% strain range. The comparison between length change and the knee's internal rotation angle revealed a positive correlation (r = 1, p < 0.01). The current study shows that elastic polymer-based capacitive strain gauges are a reliable instrument for the internal rotation measurement of the knee. This will allow dynamic measurements in the future under many different settings. In addition, significant gender differences in the internal rotation angle were seen.

10.
Materials (Basel) ; 16(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37569926

RESUMO

In the last several years, zinc and its alloys have come into focus as bioabsorbable materials by qualifying themselves with an excellent corrosion rate, mechanical properties, anti-bacterial effects. and considerable biocompatibility. In this study, the biocompatibility of zinc-silver alloys containing 3.3 wt% silver (ZnAg3) was assessed by evaluating their cell viability, the proliferation rate, and the cell toxicity. Two alloys were investigated in which one was phosphated and the other was non-phosphated. The alloys were tested on human osteoblasts (hOb), which are, to a large extent, responsible for bone formation and healing processes. The performance of the phosphated alloy did not differ significantly from the non-phosphated alloy. The results showed a promising biocompatibility with hOb for both alloys equally in all conducted assays, qualifying ZnAg3 for further investigations such as in vivo studies.

11.
Bioengineering (Basel) ; 10(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36829750

RESUMO

To enable rapid osteointegration in bioceramic implants and to give them osteoinductive properties, scaffolds with defined micro- and macroporosity are required. Pores or pore networks promote the integration of cells into the implant, facilitating the supply of nutrients and the removal of metabolic products. In this paper, scaffolds are created from ß-tricalciumphosphate (ß-TCP) and in a novel way, where both the micro- and macroporosity are adjusted simultaneously by the addition of pore-forming polymer particles. The particles used are 10-40 wt%, spherical polymer particles of polymethylmethacrylate (PMMA) (Ø = 5 µm) and alternatively polymethylsilsesquioxane (PMSQ) (Ø = 2 µm), added in the course of ß-TCP slurry preparation. The arrangement of hydrophobic polymer particles at the interface of air bubbles was incorporated during slurry preparation and foaming of the slurry. The foam structures remain after sintering and lead to the formation of macro-porosity in the scaffolds. Furthermore, decomposition of the polymer particles during thermal debindering results in the formation of an additional network of interconnecting micropores in the stabilizing structures. It is possible to adjust the porosity easily and quickly in a range of 1.2-140 µm with a relatively low organic fraction. The structures thus prepared showed no cytotoxicity nor negative effects on the biocompatibility.

12.
J Mech Behav Biomed Mater ; 144: 105951, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295386

RESUMO

In the present work, we test four thin coatings for titanium implants, namely, bioglass, GB14, Beta-Tricalciumphosphate (ß-TCP) and hydroxyapatite (HA) with and without incorporated copper ions for their osteointegrative capacity. A rabbit drill hole model for time intervals up to 24 weeks was used in this study. Implant fixation was evaluated by measuring shear strength of the implant/bone interface. Quantitative histological analysis was performed for the measurements of bone contact area. Implants with and without copper ions were compared after 24 weeks. Thin coatings of GB14, HA or TCP on titanium implants demonstrated high shear strength during the entire test period of up to 24 weeks. Results confirmed osteointegrative properties of the coatings and did not reveal any negative effect of copper ions on osteointegration. The integration of copper in degradable osteoconductive coatings with a thickness of approx. 20 µm represents a promising method of achieving antibacterial shielding during the entire period of bone healing while at the same time improving osteointegration of the implants.


Assuntos
Cobre , Durapatita , Animais , Coelhos , Titânio , Cerâmica , Propriedades de Superfície , Materiais Revestidos Biocompatíveis/farmacologia , Osseointegração
13.
Biomedicines ; 11(12)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38137364

RESUMO

BACKGROUND: The treatment of grafts with vancomycin for ligament reconstruction in knee surgery is the current standard. However, high antibiotic concentrations have chondrotoxic effects. PURPOSE: To test the chondrotoxicity of clindamycin, gentamicin and vancomycin in comparable concentrations. In vitro and in vivo effective concentrations hugely vary from drug to drug. To allow for comparisons between these three commonly used antibiotics, the concentration ranges frequently used in orthopedic surgical settings were tested. STUDY DESIGN: Controlled laboratory study. METHODS: Human cartilage from 10 specimens was used to isolate chondrocytes. The chondrocytes were treated with clindamycin (1 mg/mL and 0.5 mg/mL), gentamicin (10 mg/mL and 5 mg/mL) or vancomycin (10 mg/mL and 5 mg/mL), at concentrations used for preoperative infection prophylaxis in ligament surgery. Observations were taken over a period of 7 days. A control of untreated chondrocytes was included. To test the chondrotoxicity, a lactate dehydrogenase (LDH) test and a water-soluble tetrazolium salt (WST-1) assay were performed on days 1, 3 and 7. In addition, microscopic examinations were performed after fluorescence staining of the cells at the same time intervals. RESULTS: All samples showed a reasonable vitality of the cartilage cells after 72 h. However, clindamycin and gentamicin both showed higher chondrotoxicity in all investigations compared to vancomycin. After a period of 7 days, only chondrocytes treated with vancomycin showed reasonable vitality. CONCLUSIONS: The preoperative treatment of ligament grafts with vancomycin is the most reasonable method for infection prophylaxis, in accordance with the current study results regarding chondrotoxicity; however, clindamycin and gentamicin cover a wider anti-bacterial spectrum. CLINICAL RELEVANCE: The prophylactic antibiotic treatment of ligament grafts at concentrations of 5 mg/mL or 10 mg/mL vancomycin is justifiable and reasonable. In specific cases, even the use of gentamicin and clindamycin is appropriate.

14.
Materials (Basel) ; 15(9)2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35591612

RESUMO

Bioabsorbable implants have become the focus of the latest research for new bone implant materials. With favorable characteristics such as compatible mechanical characteristics, no long-term side effects, and even osteogenesis enhancing properties they seem to be the future of osteosynthesis. Besides these characteristics, they must perform on the same level as traditional implant materials regarding their mechanical support for bone healing. A particular focus in the research for bioabsorbable implants has been on metal alloys, as these have particularly good mechanical properties such as excellent maximum force and high stability. This study focused on the shear strength of new bioabsorbable zinc and magnesium pins in comparison to traditional implants such as K-wires and cancellous bone screws in bone-implant connections. During quasi-static and fatigue loading experiments, magnesium pins (MAGNEZIX, Syntellix AG, Hannover, Germany) and new zinc silver pins (Zn-6Ag) by Limedion (Limedion GmbH., Mannheim, Germany) were compared with conventional osteosynthetic materials. The pins made of the new bioabsorbable alloys withstood the cyclic loads to the same extent as the conventional osteosynthesis materials. In the quasi-static loading, it was shown that the novel Zn-6Ag from Limedion has the same shear strength as the magnesium pin from Syntellix, which is already in clinical use. In addition, the zinc pin showed significantly better shear strength compared to osteosynthesis with K-wires (p < 0.05).

15.
Gels ; 8(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35735709

RESUMO

The aim of the present work was to develop a dual staged drug release of an antibiotic (clindamycin) and a growth factor: bone morphogenetic protein-2 (BMP-2) from a biodegradable system consisting of hydrogel and gelatin nanoparticles (GNP). Two-step de-solvation allowed us to prepare GNPs (~100 nm) as drug carriers. Fluorescein isothiocyanate (FITC)-conjugated protein A was used as a model substance for BMP-2. A 28-day release experiment was performed to determine the release kinetics from GNP for both FITC-protein A and BMP-2, and for clindamycin (CLI) from the hydrogel. The size, structure, and overall morphology of GNP samples (empty, loaded with FITC-protein A and BMP-2) were examined using an environmental scanning electron microscope (ESEM). Cell culture assays (Live/dead; cell proliferation; cytotoxicity) were performed with MG-63 cells and BMP-2-loaded GNPs. Drug release experiments using clindamycin-loaded alginate-di-aldehyde (ADA) gelatin gels containing the drug-loaded GNPs were performed for 28 days. The resulting GNPs showed an empty size of 117 ± 29 nm, 176 ± 15 nm and 216 ± 36 nm when containing 2% FITC-protein A and 1% BMP-2, respectively. No negative effects of BMP-2-loaded GNPs on MG-63 cells were observed in live/dead staining. In the proliferation assay, an increase in cell proliferation was observed for both GNPs (GNP + BMP-2 and controls). The cytotoxicity assay continuously showed very low cytotoxicity for GNPs (empty; loaded). Clindamycin release showed a concentration of 25-fold higher than the minimum inhibitory concentration (MIC) against Staphylococcus aureus throughout the 28 day period. BMP-2 showed a reduced burst release and a steady release (~2 µg/mL) over a 28 day period.

16.
Materials (Basel) ; 15(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35057136

RESUMO

Zinc alloys have recently been researched intensely for their great properties as bioabsorbable implants for osteosynthesis. Pure zinc (Zn) itself has relatively poor strength, which makes it insufficient for most clinical use. Research has already proven that the mechanical strength of zinc can be enhanced significantly by alloying it with silver. This study evaluated zinc silver alloys (ZnAg) as well as novel zinc silver titanium alloys (ZnAgTi) regarding their mechanical properties for the use as bioabsorbable implants. Compared to pure zinc the mechanical strength was enhanced significantly for all tested zinc alloys. The elastic properties were only enhanced significantly for the zinc silver alloys ZnAg6 and ZnAg9. Regarding target values for orthopedic implants proposed in literature, the best mechanical properties were measured for the ZnAg3Ti1 alloy with an ultimate tensile strength of 262 MPa and an elongation at fracture of 16%. Besides the mechanical properties, the corrosion rates are important for bioabsorbable implants. This study tested the corrosion rates of zinc alloys in PBS solution (phosphate buffered solution) with electrochemical corrosion measurement. Zinc and its alloys showed favorable corrosion rates, especially in comparison to magnesium, which has a much lower degradation rate and no buildup of hydrogen gas pockets during the process. Altogether, this makes zinc alloys highly favorable for use as material for bioabsorbable implants for osteosynthesis.

17.
Materials (Basel) ; 15(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35329543

RESUMO

Introduction The use of scaffolds in tissue engineering is becoming increasingly important as solutions need to be found for the problem of preserving human tissue, such as bone or cartilage. In this work, scaffolds were printed from the biomaterial known as polycaprolactone (PCL) on a 3D Bioplotter. Both the external and internal geometry were varied to investigate their influence on mechanical stability and biocompatibility. Materials and Methods: An Envisiontec 3D Bioplotter was used to fabricate the scaffolds. First, square scaffolds were printed with variations in the strand width and strand spacing. Then, the filling structure was varied: either lines, waves, and honeycombs were used. This was followed by variation in the outer shape, produced as either a square, hexagon, octagon, or circle. Finally, the internal and external geometry was varied. To improve interaction with the cells, the printed PCL scaffolds were coated with type-I collagen. MG-63 cells were then cultured on the scaffolds and various tests were performed to investigate the biocompatibility of the scaffolds. Results: With increasing strand thickness and strand spacing, the compressive strengths decreased from 86.18 + 2.34 MPa (200 µm) to 46.38 + 0.52 MPa (600 µm). The circle was the outer shape with the highest compressive strength of 76.07 + 1.49 MPa, compared to the octagon, which had the lowest value of 52.96 ± 0.98 MPa. Varying the external shape (toward roundness) geometry, as well as the filling configuration, resulted in the highest values of compressive strength for the round specimens with honeycomb filling, which had a value of 91.4 + 1.4 MPa. In the biocompatibility tests, the round specimens with honeycomb filling also showed the highest cell count per mm2, with 1591 ± 239 live cells/mm2 after 10 days and the highest value in cell proliferation, but with minimal cytotoxic effects (9.19 ± 2.47% after 3 days).

18.
J Funct Biomater ; 13(4)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36412879

RESUMO

In this project, different calcification methods for collagen and collagen coatings were compared in terms of their applicability for 3D printing and production of collagen-coated scaffolds. For this purpose, scaffolds were printed from polycaprolactone PCL using the EnvisionTec 3D Bioplotter and then coated with collagen. Four different coating methods were then applied: hydroxyapatite (HA) powder directly in the collagen coating, incubation in 10× SBF, coating with alkaline phosphatase (ALP), and coating with poly-L-aspartic acid. The results were compared by ESEM, µCT, TEM, and EDX. HA directly in the collagen solution resulted in a pH change and thus an increase in viscosity, leading to clumping on the scaffolds. As a function of incubation time in 10× SBF as well as in ALP, HA layer thickness increased, while no coating on the collagen layer was apparently observed with poly-L-aspartic acid. Only ultrathin sections and TEM with SuperEDX detected nano crystalline HA in the collagen layer. Exclusively the incubation in poly-L-aspartic acid led to HA crystals within the collagen coating compared to all other methods where the HA layers formed in different forms only at the collagen layer.

19.
Bioengineering (Basel) ; 9(12)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36550986

RESUMO

With more than 1.5 million total knee and hip implants placed each year, there is an urgent need for a drug delivery system that can effectively support the repair of bone infections. Scaffolds made of natural biopolymers are widely used for this purpose due to their biocompatibility, biodegradability, and suitable mechanical properties. However, the poor processability is a bottleneck, as highly customizable scaffolds are desired. The aim of the present research is to develop a scaffold made of thermoplastic collagen (TC) using 3D printing technology. The viscosity of the material was measured using a rheometer. A 3D bioplotter was used to fabricate the scaffolds out of TC. The mechanical properties of the TC scaffolds were performed using tension/compression testing on a Zwick/Roell universal testing machine. TC shows better compressibility with increasing temperature and a decrease in dynamic viscosity (η), storage modulus (G'), and loss modulus (G″). The compressive strength of the TC scaffolds was between 3-10 MPa, depending on the geometry (cylinder or cuboid, with different infills). We have demonstrated for the first time that TC can be used to fabricate porous scaffolds by 3D printing in various geometries.

20.
Biomedicines ; 10(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36551998

RESUMO

In the literature, many studies have described the 3D printing of ceramic-based scaffolds (e.g., printing with calcium phosphate cement) in the form of linear structures with layer rotations of 90°, although no right angles can be found in the human body. Therefore, this work focuses on the adaptation of biological shapes, including a layer rotation of only 1°. Sample shapes were printed with calcium phosphate cement using a 3D Bioplotter from EnvisionTec. Both straight and wavy spokes were printed in a round structure with 12 layers. Depending on the strand diameter (200 and 250 µm needle inner diameter) and strand arrangement, maximum failure loads of 444.86 ± 169.39 N for samples without subsequent setting in PBS up to 1280.88 ± 538.66 N after setting in PBS could be achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA