Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
New Phytol ; 217(2): 939-955, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29083043

RESUMO

Nonrandom collecting practices may bias conclusions drawn from analyses of herbarium records. Recent efforts to fully digitize and mobilize regional floras online offer a timely opportunity to assess commonalities and differences in herbarium sampling biases. We determined spatial, temporal, trait, phylogenetic, and collector biases in c. 5 million herbarium records, representing three of the most complete digitized floras of the world: Australia (AU), South Africa (SA), and New England, USA (NE). We identified numerous shared and unique biases among these regions. Shared biases included specimens collected close to roads and herbaria; specimens collected more frequently during biological spring and summer; specimens of threatened species collected less frequently; and specimens of close relatives collected in similar numbers. Regional differences included overrepresentation of graminoids in SA and AU and of annuals in AU; and peak collection during the 1910s in NE, 1980s in SA, and 1990s in AU. Finally, in all regions, a disproportionately large percentage of specimens were collected by very few individuals. We hypothesize that these mega-collectors, with their associated preferences and idiosyncrasies, shaped patterns of collection bias via 'founder effects'. Studies using herbarium collections should account for sampling biases, and future collecting efforts should avoid compounding these biases to the extent possible.


Assuntos
Plantas/anatomia & histologia , Austrália , Geografia , Modelos Teóricos , Filogenia , Característica Quantitativa Herdável , Análise de Regressão , Viés de Seleção , Fatores de Tempo
2.
Am J Bot ; 104(9): 1313-1322, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-29885245

RESUMO

PREMISE OF THE STUDY: Many plants increase reproduction in response to rising levels of atmospheric CO2 . However, environmental and genetic variation across heterogeneous landscapes can lead to intraspecific differences in the partitioning of CO2 -induced carbon gains to reproductive tissue relative to growth. METHODS: We measured the effects of rising atmospheric CO2 on biomass allocation in the allergenic plant Ambrosia artemisiifolia (common ragweed) across a geographic climate gradient. We grew plants from three latitudes at 400, 600, and 800 µL·L-1 CO2 and analyzed biomass allocation and natural selection on flowering phenology and growth. KEY RESULTS: Both the latitude of origin and CO2 treatment had significant effects on allocation and on estimates of selection. Northern plants were under stronger selection than southern plants to flower quickly, and they produced larger seeds and more reproductive mass per unit of growth. Northern plants were under stronger selection than southern plants to flower quickly, and they produced larger seeds and more reproductive mass per unit of growth. While all plants grew larger and produced heavier seeds at higher CO2 , only northern plants increased male flower production. Both size and time to flowering were under selection, with a relaxation of the size-fitness function in northern ecotypes at high CO2 . CONCLUSIONS: Northern ecotypes allocate more CO2 -induced carbon gains to reproduction than do southern plants, pointing to a geographic gradient in future pollen and seed production by this species arising from local adaptation. Relaxed selection on size at elevated CO2 could amplify reproductive enhancements to northern ecotypes, although more growth and seed provisioning can be expected overall. Our results demonstrate potential for ecotypic divergence in ragweed responses to climate change.


Assuntos
Ambrosia/fisiologia , Dióxido de Carbono/fisiologia , Ecótipo , Flores/fisiologia , Seleção Genética , Reprodução
3.
Oecologia ; 182(2): 587-94, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27318697

RESUMO

Significant changes in plant phenology and flower production are predicted over the next century, but we know relatively little about geographic patterns of this response in many species, even those that potentially impact human wellbeing. We tested for variation in flowering responses of the allergenic plant, Ambrosia artemisiifolia (common ragweed). We grew plants originating from three latitudes in the Northeastern USA at experimental levels of CO2 (400, 600, and 800 µL L(-1)). We hypothesized that northern ecotypes adapted to shorter growing seasons would flower earlier than their southern counterparts, and thus disproportionately allocate carbon gains from CO2 to reproduction. As predicted, latitude of origin and carbon dioxide level significantly influenced the timing and magnitude of flowering. Reproductive onset occurred earlier with increasing latitude, with concurrent increases in the number of flowers produced. Elevated carbon dioxide resulted in earlier reproductive onset in all ecotypes, which was significantly more pronounced in the northern populations. We interpret our findings as evidence for ecotypic variation in ragweed flowering time, as well in responses to CO2. Thus, the ecological and human health implications of common ragweed's response to global change are likely to depend on latitude. We conclude that increased flower production, duration, and possibly pollen output, can be expected in Northeastern United States with rising levels of CO2. The effects are likely, however, to be most significant in northern parts of the region.


Assuntos
Ambrosia , Ecótipo , Flores , Humanos , Pólen , Estações do Ano , Espirro
4.
PLoS Biol ; 4(11): e344, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17048988

RESUMO

Theories of tropical tree diversity emphasize dispersal limitation as a potential mechanism for separating species in space and reducing competitive exclusion. We compared the dispersal morphologies, fruit sizes, and spatial distributions of 561 tree species within a fully mapped, 50-hectare plot of primary tropical forest in peninsular Malaysia. We demonstrate here that the extent and scale of conspecific spatial aggregation is correlated with the mode of seed dispersal. This relationship holds for saplings as well as for mature trees. Phylogenetically independent contrasts confirm that the relationship between dispersal and spatial pattern is significant even after controlling for common ancestry among species. We found the same qualitative results for a 50-hectare tropical forest plot in Panama. Our results provide broad empirical evidence for the importance of dispersal mode in establishing the long-term community structure of tropical forests.


Assuntos
Sementes/fisiologia , Árvores/fisiologia , Clima Tropical , Animais , Aves/fisiologia , Ecossistema , Balística Forense , Frutas/fisiologia , Gravitação , Panamá , Filogenia , Fenômenos Fisiológicos Vegetais , Sementes/crescimento & desenvolvimento , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA