Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Nutr ; 130(12): 2088-2094, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37272629

RESUMO

We previously reported that the addition of a specified mulberry fruit extract (MFE) to rice consistently reduces post-prandial glycaemic (PPG) and post-prandial insulinemic (PPI) responses. This research tested whether this effect generalises to a broad range of rice types, reflecting the wide variation in rice characteristics known to influence glycaemic responses. In a randomised, balanced, partial factorial crossover design, Sona Masoori (SM), Bora Saul (BS), Gobindobogh (Gb) and Banskati (Bn) rices were tested with and without 0·37 g MFE. Healthy, normal-weight Indian adults (N 120) each consumed four of the eight possible boiled rice meals, all containing about 50 g available carbohydrate. The primary outcome was the effect of MFE on PPG, expressed as the percentage change in the positive, incremental AUC over 2 h. The mean effect of MFE on PPG for all rice types combined was -11·4 % (P < 0·003). The reduction in PPG was in a qualitatively similar range for all rice types (-9·8 to -15·1 %), and this was statistically significant for Bn. MFE also reduced the corresponding PPI response to all rice types combined by a mean of 10·1 % (P < 0·001; range -6·1 to -13·4 %), and the reduction in PPI was statistically significant for SM, Gb and BS. In conclusion, addition of 0·37 g MFE modestly reduced PPG and PPI responses to rices in general, and the effects were statistically significant for specific rice types.


Assuntos
Morus , Oryza , Humanos , Adulto , Glicemia , Frutas , Insulina , Extratos Vegetais/farmacologia , Período Pós-Prandial , Estudos Cross-Over , Índice Glicêmico
2.
Chem Phys Lipids ; 127(1): 15-33, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14706738

RESUMO

The formation of mixed water-insoluble poorly absorbable crystals between cholesterol (CH) and phytosterols (PS) or phytostanols (PSS) in the intestinal lumen has been considered for a long time as a plausible mechanism of the PS/PSS-induced reduction of serum CH concentration. In this report, we demonstrated with the use of the powder X-ray diffraction (XRD) and the differential scanning calorimetry (DSC) techniques that mixed CH:beta-sitosterol (SI) crystals can be formed by recrystallization of corresponding mixtures from melts and also from mixed CH:SI solutions in triglyceride oil. Formation of mixed CH:SI crystals takes place in a wide interval of CH:SI ratios, from approximately 10 up to approximately 75 wt.% of SI in the mixture. Formation of mixed CH:sitostanol (SS) crystals from melts and solutions in triglyceride oil was also detected, but in a more narrow interval of CH:SS ratios. However, during the lipolysis of model dietary emulsions under in vitro conditions, the formation of crystalline material was not detected due to the relatively high solubility of free sterols/stanols in products of fat hydrolysis. We found that the solubility of free CH, SI, and SS raises upon the increase in the solvent polarity, i.e. free fatty acid > diglycerideoil > triglyceride oil. Therefore, we believe that the cocrystallization mechanism of phytosterol-induced serum CH lowering has relatively low importance, unless the diet is specially designed to include relatively little amounts of dietary fats. The presented experimental evidence demonstrates that it is unlikely that the formation of poorly absorbable mixed crystals largely affects the intestinal absorption of CH and, therefore, that this is a prime mechanism by which PS and PSS effect CH absorption.


Assuntos
Colesterol/química , Fitosteróis/química , Sitosteroides/química , Absorção , Varredura Diferencial de Calorimetria , Cristalização , Lipase/química , Solubilidade , Triglicerídeos/química , Difração de Raios X
3.
Chem Phys Lipids ; 127(2): 121-41, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14725996

RESUMO

The effect of a plant sterol, beta-sitosterol (SI), and a plant stanol, sitostanol (SS), on the solubilization of cholesterol (CH) by model dietary mixed micelles was examined under in vitro conditions with the use of gas chromatography, isothermal titration calorimetry, NMR spectroscopy and cryogenic transmission electron microscopy techniques. Free SI and SS were shown to reduce the concentration of CH in dietary mixed micelles via a dynamic competition mechanism. CH, SI and SS affect the microstructure of lipid vesicles and influence the process of amphiphilic self-assembly of nutrients in the gut with the formation of dietary mixed micelles in a similar manner. Therefore, substitution of CH by phytosterols and phytostanols in the diet does not lead to the notable changes in the mechanism of dietary mixed micelle formation and does not affect the process of the intestinal transport of nutrients and drugs via the micellar diffusion mechanism. Our experimental findings demonstrate that the introduction of plant sterols and plant stanols into the diet is clearly beneficial for the reduction of the intestinal uptake of cholesterol. Due to the limited capacity of dietary mixed micelles to embody hydrophobic sterol/stanol molecules, the micellar concentration of cholesterol is reduced and hence, its transport towards the intestinal brush border membrane decreases.


Assuntos
Colesterol/química , Micelas , Sitosteroides/química , Ácidos e Sais Biliares/química , Calorimetria/métodos , Colesterol na Dieta/farmacocinética , Cromatografia Gasosa , Microscopia Crioeletrônica , Hipolipemiantes/farmacocinética , Hipolipemiantes/farmacologia , Ressonância Magnética Nuclear Biomolecular , Ácido Oleico/química , Fosfatidilcolinas/química , Sitosteroides/farmacocinética , Sitosteroides/farmacologia , Solubilidade , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA