RESUMO
The data on the synthesis of N-aminomorpholine hydrazones are presented. It is shown that the interaction of N-aminomorpholine with functionally substituted benzaldehydes and 4-pyridinaldehyde in isopropyl alcohol leads to the formation of corresponding hydrazones. The structure of the synthesized compounds was studied by 1H and 13C NMR spectroscopy methods, including the COSY (1H-1H), HMQC (1H-13C) and HMBC (1H-13C) methodologies. The values of chemical shifts, multiplicity, and integral intensity of 1H and 13C signals in one-dimensional NMR spectra were determined. The COSY (1H-1H), HMQC (1H-13C), and HMBC (1H-13C) results revealed homo- and heteronuclear interactions, confirming the structure of the studied compounds. The antiviral, cytotoxic, and antimicrobial activity of some synthesized hydrazones were investigated. It is shown that 2-((morpholinoimino)methyl)benzoic acid has a pronounced viral inhibitory property, comparable in its activity to commercial drugs Tamiflu and Remantadine. A docking study was performed using the influenza virus protein models (1930 Swine H1 Hemagglutinin and Neuraminidase of 1918 H1N1 strain). The potential binding sites that are complementary with 2-((morpholinoimino)methyl)benzoic acid were found.
Assuntos
Hidrazonas , Simulação de Acoplamento Molecular , Morfolinas , Hidrazonas/química , Hidrazonas/farmacologia , Hidrazonas/síntese química , Morfolinas/química , Morfolinas/farmacologia , Morfolinas/síntese química , Humanos , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Animais , Relação Estrutura-Atividade , Testes de Sensibilidade Microbiana , Estrutura MolecularRESUMO
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive memory loss and cognitive impairment due in part to a severe loss of cholinergic neurons in specific brain areas. AD is the most common type of dementia in the aging population. Although several acetylcholinesterase (AChE) inhibitors are currently available, their performance sometimes yields unexpected results. Thus, research is ongoing to find potentially therapeutic AChE inhibitory agents, both from natural and synthetic sources. Here, we synthesized 13 new lupinine triazole derivatives and evaluated them, along with 50 commercial lupinine-based esters of different carboxylic acids, for AChE inhibitory activity. The triazole derivative 15 [1S,9aR)-1-((4-(4-(benzyloxy)-3-methoxyphenyl)-1H-1,2,3-triazol-1-yl)methyl)octahydro-2H-quinolizine)] exhibited the most potent AChE inhibitory activity among all 63 lupinine derivatives, and kinetic analysis demonstrated that compound 15 was a mixed-type AChE inhibitor. Molecular docking studies were performed to visualize interaction between this triazole derivative and AChE. In addition, a structure-activity relationship (SAR) model developed using linear discriminant analysis (LDA) of 11 SwissADME descriptors from the 50 lupinine esters revealed 5 key physicochemical features that allowed us to distinguish active versus non-active compounds. Thus, this SAR model could be applied for design of more potent lupinine ester-based AChE inhibitors.
Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Idoso , Simulação de Acoplamento Molecular , Acetilcolinesterase/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Cinética , Inibidores da Colinesterase/química , Relação Estrutura-Atividade , Doença de Alzheimer/tratamento farmacológico , Triazóis/químicaRESUMO
This study investigated the effects of aseptic inflammation and heavy metal exposure on immune responses, as well as the potential immunomodulatory properties of the newly synthesized 1-[1-(2,5-dimethoxyphenyl)-4-(naphthalene-1-yloxy)but-2-ynyl]-4-methylpiperazine complexed with ß-cyclodextrin (ß-CD). Aseptic inflammation was induced by a subcutaneous injection of turpentine in rats, while heavy metal exposure was achieved through a daily administration of cadmium chloride and lead acetate. The levels of immune cell populations, including cytotoxic T lymphocytes (CTL), monocytes, and granulocytes, were assessed in the spleen. The results showed that aseptic inflammation led to decreased levels of CTL, monocytes, and granulocytes on the 14th day, indicating an inflammatory response accompanied by a migration of effector cells to the inflamed tissues. The exposure to cadmium chloride and lead acetate resulted in systemic immunotoxic effects, with reduced levels of B cells, CD4+ Th cells, monocytes, and granulocytes in the spleen. Notably, piperazine complexed with ß-CD (the complex) exhibited significant stimulatory effects on CD4+, CD8+, and myeloid cell populations during aseptic inflammation, even in the presence of heavy metal exposure. These findings suggest the potential immunomodulatory properties of the complex in the context of aseptic inflammation and heavy metal exposure.
Assuntos
Cádmio , Metais Pesados , Ratos , Animais , Cádmio/toxicidade , Cloreto de Cádmio/toxicidade , Inflamação/induzido quimicamente , Piperazinas/farmacologiaRESUMO
We report the syntheses and characterization of novel 3,7-bicycl[3.3.1]bispidines possessing an imidazolpropyl group attached to N-3, and at N-7 a Boc group, as well as a benzoylated-oximated group at C-9. These compounds were complexed with ß-cyclodextrin [ß-CD] and evaluated as seed protectors of selected wheat seedlings. Using strong acid, condensations of N-substituted piperidones with the appropriate imidazolpropyl groups at N-3 and N-7 led to bispidinones 6 and 7. These intermediates were reduced to the corresponding 3,7-diazabicyclo[3.3.1]nonane targets. The oxime at C-9 was benzoylated to yield 13. Heating these 3,7-diazabicyclo[3.3.1]nonanes in ethanol with ß-CD generated the complexes required. We investigated the ability of such complexes as coatings on seedlings to protect and stimulate growth of three varieties of wheat, namely Kazakhstanskaya-10, Severyanka, and Miras. The complex of 3-[3-(1H-imidazol-1-yl)propyl]-7-(3-methoxypropyl)-3,7-diazabicyclo[3.3.1]nonane (2) promoted growth in the root systems of all three wheat varieties by more than 30% in Kazakhstanskaya-10, 30% in Severyanka and 8.5% in Miras. A complex of 3-Boc-7-[3-(1H-imidazol-1-yl)propyl]-3,7-diazabicyclo[3.3.1]nonane (9) increased both shoot and root length in only the Severyanka variety. The complex of 3-(3-butoxypropyl)-7-[3-(1H-imidazol-1-yl)propyl]-3,7-diazabicyclo[3.3.1]nonane (11) stimulated both shoot growth (0.8%, 12.3%, 13.5%) and root growth (12.3%, 9.4%, 21.7%) in all three varieties of wheat, respectively. The nature of substituents on the bispidine affect the activity. Solid complexes (1:1) were generated as powders which melted above 240 °C (dec) and were characterized via elemental analyses as 1:1 complexes.
Assuntos
Triticum , beta-Ciclodextrinas , beta-Ciclodextrinas/farmacologiaRESUMO
Polyampholyte nanogels based on N-isopropylacrylamide (NIPAM), (3-acrylamidopropyl) trimethylammonium chloride (APTAC) and 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) were synthesized via conventional redox-initiated free radical copolymerization. The resultant nanogels of various compositions, specifically [NIPAM]:[APTAC]:[AMPS] = 90:5:5; 90:7.5:2.5; 90:2.5:7.5 mol.%, herein abbreviated as NIPAM90-APTAC5-AMPS5, NIPAM90-APTAC7.5-AMPS2.5 and NIPAM90-APTAC2.5-AMPS7.5, were characterized by a combination of 1H NMR and FTIR spectroscopy, TGA, UV-Vis, DLS and zeta potential measurements. The temperature and salt-responsive properties of amphoteric nanogels were studied in aqueous and saline solutions in a temperature range from 25 to 60 °C and at ionic strengths (µ) of 10-3 to 1M NaCl. Volume phase transition temperatures (VPTT) of the charge-balanced nanogel were found to reach a maximum upon the addition of salt, whereas the same parameter for the charge-imbalanced nanogels exhibited a sharp decrease at higher saline concentrations. A wide bimodal distribution of average hydrodynamic sizes of nanogel particles had a tendency to transform to a narrow monomodal peak at elevated temperatures and higher ionic strengths. According to the DLS results, increasing ionic strength results in the clumping of nanogel particles.
RESUMO
This article has studied the synthesis of a new derivative of the known alkaloid cytisine contained in the seeds of plants of Cytisus laburnum L. and Thermopsis lanceolata R.Br., both of the Lugiminosae family. The new compound has been obtained from two biologically active compounds, such as isoxazole and cytisine. It has been demonstrated that the reaction led to the single-stage method under very mild conditions to obtain 4-[(3,5-dimethyl-1,2-oxazol-4-yl)sulfonyl]cytisine. This class of compounds is promising for obtaining the new biologically active compounds. This article has examined, in detail, a structure with using the 1H and 13C NMR and two-dimensional NMR spectroscopy of COSY (1H-1H), HMQC (1H-13C) and HMBC (1H-13C). As a result, the homo- and heteronuclear spin-spin couplings should be established. The X-ray diffraction analysis has determined the spatial structure of a new derivative based on the cytisine alkaloid. Thus, its hemorheological activity has been studied.