Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Indoor Air ; 32(10): e13130, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36305064

RESUMO

It is critical to thoroughly investigate, characterize, and understand the unique emission profiles of common and novel polymer feedstocks used in fused filament fabrication (FFF) 3D printers as these products become increasingly ubiquitous in consumer and industrial environments. This work contributes unique insights regarding the effects of polymer composite feedstocks with metal, ceramic, or carbonaceous particle additives on particulate emissions in a variety of filaments under various print conditions, including print temperature. In addition to active characterization of particulate size and concentration following the ANSI/CAN/UL 2904 method, particulate sampling and subsequent analysis by scanning electron microscopy revealed agglomeration behavior that may have important health implications. Specifically, fine particles (0.3-2.5 µm) generated by certain filaments including acrylonitrile butadiene styrene (ABS) and glycol-modified poly(ethylene terephthalate) (PETG) are shown to be formed via agglomeration of emitted ultrafine particles rather than composed of coherent primary particles; accordingly, transport and behavior of these particulates after inhalation may not follow expected patterns for micrometer-sized particles. Structures resembling carbonaceous additives (e.g., graphene and nanotubes) were also captured by airborne sampling during printing of filaments containing carbonaceous advanced materials.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar em Ambientes Fechados/análise , Tamanho da Partícula , Polímeros , Impressão Tridimensional , Material Particulado/análise
2.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35269855

RESUMO

Human adipose-derived stem cells (hADSCs) have the capacity for osteogenic differentiation and, in combination with suitable biomaterials and growth factors, the regeneration of bone defects. In order to differentiate hADSCs into the osteogenic lineage, bone morphogenetic proteins (BMPs) have been proven to be highly effective, especially when expressed locally by route of gene transfer, providing a constant stimulus over an extended period of time. However, the creation of genetically modified hADSCs is laborious and time-consuming, which hinders clinical translation of the approach. Instead, expedited single-surgery gene therapy strategies must be developed. Therefore, in an in vitro experiment, we evaluated a novel growth factor delivery system, comprising adenoviral BMP-2 transduced fascia tissue in terms of BMP-2 release kinetics and osteogenic effects, on hADSCs seeded on an innovative biomimetic spongiosa-like scaffold. As compared to direct BMP-2 transduction of hADSCs or addition of recombinant BMP-2, overexpressing fascia provided a more uniform, constant level of BMP-2 over 30 days. Despite considerably higher BMP-2 peak levels in the comparison groups, delivery by overexpressing fascia led to a strong osteogenic response of hADSCs. The use of BMP-2 transduced fascia in combination with hADSCs may evolve into an expedited single-surgery gene transfer approach to bone repair.


Assuntos
Biomimética , Osteogênese , Tecido Adiposo/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Células Cultivadas , Fáscia/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Osteogênese/genética , Células-Tronco/metabolismo
3.
BMC Biotechnol ; 20(1): 48, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854680

RESUMO

BACKGROUND: Human TGF-ß3 has been used in many studies to induce genes coding for typical cartilage matrix components and accelerate chondrogenic differentiation, making it the standard constituent in most cultivation media used for the assessment of chondrogenesis associated with various stem cell types on carrier matrices. However, in vivo data suggests that TGF-ß3 and its other isoforms also induce endochondral and intramembranous osteogenesis in non-primate species to other mammals. Based on previously demonstrated improved articular cartilage induction by a using hTGF-ß3 and hBMP-6 together on hADSC cultures and the interaction of TGF- ß with matrix in vivo, the present study investigates the interaction of a chitosan scaffold as polyanionic polysaccharide with both growth factors. The study analyzes the difference between chondrogenic differentiation that leads to stable hyaline cartilage and the endochondral ossification route that ends in hypertrophy by extending the usual panel of investigated gene expression and stringent employment of quantitative PCR. RESULTS: By assessing the viability, proliferation, matrix formation and gene expression patterns it is shown that hTGF-ß3 + hBMP-6 promotes improved hyaline articular cartilage formation in a chitosan scaffold in which ACAN with Col2A1 and not Col1A1 nor Col10A1 where highly expressed both at a transcriptional and translational level. Inversely, hTGF-ß3 alone tended towards endochondral bone formation showing according protein and gene expression patterns. CONCLUSION: These findings demonstrate that clinical therapies should consider using hTGF-ß3 + hBMP-6 in articular cartilage regeneration therapies as the synergistic interaction of these morphogens seems to ensure and maintain proper hyaline articular cartilage matrix formation counteracting degeneration to fibrous tissue or ossification. These effects are produced by interaction of the growth factors with the polysaccharide matrix.


Assuntos
Proteína Morfogenética Óssea 6/metabolismo , Cartilagem Articular/metabolismo , Quitosana/metabolismo , Medicina Regenerativa/métodos , Fator de Crescimento Transformador beta3/metabolismo , Animais , Proteína Morfogenética Óssea 6/genética , Cartilagem Articular/citologia , Diferenciação Celular , Proliferação de Células , Condrogênese/fisiologia , Colágeno , Colágeno Tipo X , Expressão Gênica , Humanos , Células-Tronco Mesenquimais , Osteogênese , Células-Tronco , Alicerces Teciduais , Fator de Crescimento Transformador beta3/genética
4.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514329

RESUMO

Cartilage repair using tissue engineering is the most advanced clinical application in regenerative medicine, yet available solutions remain unsuccessful in reconstructing native cartilage in its proprietary form and function. Previous investigations have suggested that the combination of specific bioactive elements combined with a natural polymer could generate carrier matrices that enhance activities of seeded stem cells and possibly induce the desired matrix formation. The present study sought to clarify this by assessing whether a chitosan-hyaluronic-acid-based biomimetic matrix in conjunction with adipose-derived stem cells could support articular hyaline cartilage formation in relation to a standard chitosan-based construct. By assessing cellular development, matrix formation, and key gene/protein expressions during in vitro cultivation utilizing quantitative gene and immunofluorescent assays, results showed that chitosan with hyaluronic acid provides a suitable environment that supports stem cell differentiation towards cartilage matrix producing chondrocytes. However, on the molecular gene expression level, it has become apparent that, without combinations of morphogens, in the chondrogenic medium, hyaluronic acid with chitosan has a very limited capacity to stimulate and maintain stem cells in an articular chondrogenic state, suggesting that cocktails of various growth factors are one of the key features to regenerate articular cartilage, clinically.


Assuntos
Tecido Adiposo/citologia , Materiais Biomiméticos/farmacologia , Cartilagem Articular/fisiologia , Quitosana/farmacologia , Condrogênese , Ácido Hialurônico/farmacologia , Células-Tronco/citologia , Cartilagem Articular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células-Tronco/efeitos dos fármacos , Células-Tronco/ultraestrutura , Alicerces Teciduais/química
5.
Adv Healthc Mater ; 12(2): e2202106, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250334

RESUMO

Inadequate mechanical compliance of orthopedic implants can result in excessive strain of the bone interface, and ultimately, aseptic loosening. It is hypothesized that a fiber-based biometal with adjustable anisotropic mechanical properties can reduce interface strain, facilitate continuous remodeling, and improve implant survival under complex loads. The biometal is based on strategically layered sintered titanium fibers. Six different topologies are manufactured. Specimens are tested under compression in three orthogonal axes under 3-point bending and torsion until failure. Biocompatibility testing involves murine osteoblasts. Osseointegration is investigated by micro-computed tomography and histomorphometry after implantation in a metaphyseal trepanation model in sheep. The material demonstrates compressive yield strengths of up to 50 MPa and anisotropy correlating closely with fiber layout. Samples with 75% porosity are both stronger and stiffer than those with 85% porosity. The highest bending modulus is found in samples with parallel fiber orientation, while the highest shear modulus is found in cross-ply layouts. Cell metabolism and morphology indicate uncompromised biocompatibility. Implants demonstrate robust circumferential osseointegration in vivo after 8 weeks. The biometal introduced in this study demonstrates anisotropic mechanical properties similar to bone, and excellent osteoconductivity and feasibility as an orthopedic implant material.


Assuntos
Materiais Biocompatíveis , Oligoelementos , Camundongos , Animais , Ovinos , Titânio , Microtomografia por Raio-X , Próteses e Implantes , Teste de Materiais , Osseointegração , Porosidade
6.
Langenbecks Arch Surg ; 396(2): 251-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20393744

RESUMO

PURPOSE: The purpose of this study was to characterize the local pulmonary inflammatory environment and to elucidate alterations of alveolar macrophage (AMØ) functions after blunt chest trauma. METHODS: Wistar rats were subjected to blunt chest trauma. AMØ were isolated, stimulated, and cultured. Bronchoalveolar lavage (BAL) was collected. Cytokines/chemokines were quantified in the BAL and in AMØ supernatants via ELISA. AMØ phagocytic and chemotactic activity and respiratory burst capacity were assessed. RESULTS: Following chest trauma, a significant increase of IL-1ß (at 6 and 24 h) and IL-6 (at 24 h) in BAL was observed, whereas IL-10 and TNF-α concentrations were not altered. MIP-2 and CINC were substantially increased as early as 6 h and PGE2 early at 10 min, whereas BAL MCP-1 was not elevated until 24 h after trauma. MIP-2 release by AMØ isolated form trauma animals was markedly increased as early as 10 min after injury. IL-1ß and IL-10 exhibited a late increase at 24 h. AMØ TNF-α release was increased at 6 h. At 6 or 24 h, AMØ from trauma animals incorporated significantly more opsonized latex beads than their sham controls, and their chemotactic activity was substantially enhanced at 24 h. AMØ oxidative burst capacity remained largely unchanged. CONCLUSIONS: Already very early after chest trauma, inflammatory mediators are present in the intraalveolar compartment. Additionally, AMØ are primed to release cytokines and chemokines. Blunt chest trauma also changes the phagocytic and chemotactic activity of AMØ. These functional changes of AMØ might enable them to better ward off potential pathogens in the course after trauma.


Assuntos
Citocinas/imunologia , Macrófagos Alveolares/imunologia , Traumatismos Torácicos/imunologia , Animais , Quimiotaxia , Modelos Animais de Doenças , Macrófagos Alveolares/metabolismo , Masculino , Fagocitose , Ratos , Ratos Wistar , Explosão Respiratória , Ferimentos não Penetrantes/imunologia
7.
J Trauma ; 70(1): 189-96, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20495485

RESUMO

BACKGROUND: Chest trauma frequently occurs in severely injured patients and is often associated with hemorrhagic shock. Immune dysfunction contributes to the adverse outcome of multiple injuries. The aims of this study were to establish a combined model of lung contusion and hemorrhage and to evaluate the cardiopulmonary and immunologic response. METHODS: Male mice were subjected to sham procedure, chest trauma, hemorrhage (35 mm Hg±5 mm Hg, 60 minutes), or the combination. Respiratory rate, heart rate, and blood pressure were monitored. Plasma, Kupffer cells, blood monocytes, splenocytes, and splenic macrophages were isolated after 20 hours. Tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, 10, 12, 18, and macrophage inflammatory protein-2 levels in plasma and culture supernatants were determined. RESULTS: Heart rate and blood pressure dropped in all groups, and after chest trauma and the double hit, these values remained reduced until the end of observation. Blood pressure was lower after the double hit than after the single hits. Plasma and Kupffer cell TNF-α concentrations were increased after lung contusion but not further enhanced by subsequent hemorrhage. Peripheral blood mononuclear cell (PBMC) TNF-α and IL-6 release were suppressed after the combined insult. IL-18 concentrations were increased in PBMC supernatants after chest trauma and in splenic macrophage supernatants of all groups. CONCLUSIONS: Although physiologic readouts were selectively altered in response to the single or double hits, the combination did not uniformly augment the changes in inflammation. Our results suggest that the leading insult regarding the immunologic response is lung contusion, supporting the concept that lung contusion represents an important prognostic factor in multiple injuries.


Assuntos
Modelos Animais de Doenças , Choque Hemorrágico/complicações , Traumatismos Torácicos/complicações , Ferimentos não Penetrantes/complicações , Animais , Pressão Sanguínea/fisiologia , Quimiocina CXCL2/sangue , Frequência Cardíaca/fisiologia , Interleucinas/sangue , Contagem de Leucócitos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Choque Hemorrágico/imunologia , Choque Hemorrágico/patologia , Choque Hemorrágico/fisiopatologia , Baço/fisiopatologia , Traumatismos Torácicos/imunologia , Traumatismos Torácicos/patologia , Traumatismos Torácicos/fisiopatologia , Fator de Necrose Tumoral alfa/sangue , Ferimentos não Penetrantes/imunologia , Ferimentos não Penetrantes/patologia , Ferimentos não Penetrantes/fisiopatologia
8.
J Trauma ; 71(6): 1659-67, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21857260

RESUMO

BACKGROUND: When used as a pretreatment, hydrogen sulfide (H2S) either attenuated or aggravated lung injury. Therefore, we tested the hypothesis whether posttreatment intravenous Na2S (sulfide) may attenuate lung injury. METHODS: After blast wave blunt chest trauma or sham procedure, anesthetized and instrumented mice received continuous intravenous sulfide or vehicle while being kept at 37°C or 32°C core temperature. After 4 hours of pressure-controlled, thoracopulmonary compliance-titrated, lung-protective mechanical ventilation, blood and tissue were harvested for cytokine concentrations, heme oxygenase-1, IκBα, Bcl-Xl, and pBad expression (western blotting), nuclear factor-κB activation (electrophoretic mobility shift assay), and activated caspase-3, cystathionine-ß synthase and cystathionine-γ lyase (immunohistochemistry). RESULTS: Hypothermia caused marked bradycardia and metabolic acidosis unaltered by sulfide. Chest trauma impaired thoracopulmonary compliance and arterial Po2, again without sulfide effect. Cytokine levels showed inconsistent response. Sulfide increased nuclear factor-κB activation during normothermia, but this effect was blunted during hypothermia. While histologic lung injury was variable, both sulfide and hypothermia attenuated the trauma-related increase in heme oxygenase-1 expression and activated caspase-3 staining, which coincided with increased Bad phosphorylation and Bcl-Xl expression. Sulfide and hypothermia also attenuated the trauma-induced cystathionine-ß synthase and cystathionine-γ lyase expression. CONCLUSIONS: Posttreatment sulfide infusion after blunt chest trauma did not affect the impaired lung mechanics and gas exchange but attenuated stress protein expression and apoptotic cell death. This protective effect was amplified by moderate hypothermia. The simultaneous reduction in cystathionine-ß synthase and cystathionine-γ lyase expression supports the role of H2S-generating enzymes as an adaptive response during stress states.


Assuntos
Hemodinâmica/efeitos dos fármacos , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/patologia , Sulfetos/farmacologia , Ferimentos não Penetrantes/tratamento farmacológico , Animais , Western Blotting , Citocinas/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Hemodinâmica/fisiologia , Imuno-Histoquímica , Infusões Intravenosas , Lesão Pulmonar/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Troca Gasosa Pulmonar , Distribuição Aleatória , Mecânica Respiratória/efeitos dos fármacos , Sensibilidade e Especificidade , Ferimentos não Penetrantes/patologia
9.
ACS Appl Mater Interfaces ; 13(3): 3536-3546, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33438388

RESUMO

TiO2 thin films were deposited on the orthopedic implant material polyetheretherketone (PEEK) by plasma enhanced atomic layer deposition (PEALD) and characterized for their ability to enhance the osseointegrative properties. PEALD was chosen for film deposition to circumvent drawbacks present in line-of-sight deposition techniques, which require technically complex setups for a homogeneous coating thickness. Film conformality was analyzed on silicon 3D test structures and PEEK with micron-scale surface roughness. Wettability and surface energy were determined through contact angle measurements; film roughness and crystallinity were determined by atomic force microscopy and X-ray diffraction, respectively. Adhesion properties of TiO2 on PEEK were determined with tensile strength tests. Cell tests were performed with the mouse mesenchymal tumor stem cell line ST-2. TiO2-coated PEEK disks were used as substrates for cell proliferation tests and long-term differentiation tests. After 28 days of cultivation, a mineralized bone matrix was observed. Furthermore, the collagen I and osteocalcin content were determined. The results reveal that the osteogenic properties of the TiO2 thin film are comparable to those of hydroxyapatite, and thus bioactive properties of PEEK implants are improved by TiO2 thin films deposited with PEALD.

10.
Crit Care Med ; 38(9): 1852-9, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20543668

RESUMO

OBJECTIVE: This study was designed to determine whether lung contusion induces an increased pulmonary recruitment of monocytes as a source of alveolar macrophages and which mediators are involved. SETTING AND DESIGN: Prospective animal study. SUBJECTS AND INTERVENTIONS: Male Sprague-Dawley rats were subjected to chest trauma by a single blast wave. MEASUREMENTS: Chemokine concentrations in bronchoalveolar lavage fluids and supernatants of alveolar macrophages, chemokine and chemokine receptor mRNA expressions in monocytes, pulmonary interstitial macrophages, and alveolar macrophages isolated after trauma or sham procedure were evaluated. Immigration of monocytes was determined by staining alveolar macrophages with the fluorescent marker PKH26 before chest trauma. Chemotaxis of naïve monocytes in response to bronchoalveolar lavage or supernatants from alveolar macrophages isolated after trauma or sham procedure and the migratory response of monocytes isolated after trauma/sham to recombinant chemokines were measured. MAIN RESULTS: Chemokine levels in bronchoalveolar lavage and alveolar macrophage supernatants and the percentage of monocytes migrated to the lungs were increased after chest trauma. Lung contusion enhanced the mRNA expression for CCR2 in monocytes and interstitial macrophages and for monocyte chemotactic protein-1 in alveolar macrophages. Migration of naïve monocytes vs. bronchoalveolar lavage or alveolar macrophage supernatants from traumatized animals was increased when compared with samples from shams. Monocytes isolated 2 hrs after trauma showed a reduced migration to CINC-1 or monocyte chemotactic protein-1 compared with sham. CONCLUSIONS: Alveolar macrophages seem to contribute to increased chemokine concentrations in alveoli of animals subjected to blunt chest trauma. Mediators released by alveolar macrophage are potent stimuli for monocyte migration. Monocytes alter their chemokine receptor expression and are recruited to the lungs.


Assuntos
Movimento Celular , Pulmão/patologia , Monócitos/imunologia , Traumatismos Torácicos/imunologia , Ferimentos não Penetrantes/imunologia , Animais , Sequência de Bases , Líquido da Lavagem Broncoalveolar , Quimiocinas/metabolismo , Primers do DNA , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Masculino , Estudos Prospectivos , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Traumatismos Torácicos/metabolismo , Ferimentos não Penetrantes/metabolismo
11.
Tissue Eng Regen Med ; 15(6): 781-791, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30603596

RESUMO

BACKGROUND: Glucosamine hydrochloride (GlcN·HCl) has been shown to inhibit cell growth and matrix synthesis, but not with N-acetyl-glucosamine (GlcNAc) supplementation. This effect might be related to an inhibition of critical growth factors (GF), or to a different metabolization of the two glucosamine derivatives. The aim of the present study was to evaluate the synergy between GlcN·HCl, GlcNAc, and GF on proliferation and cartilage matrix synthesis. METHOD: Bovine chondrocytes were cultivated in monolayers for 48 h and in three-dimensional (3D) chitosan scaffolds for 30 days in perfusion bioreactors. Serum-free (SF) medium was supplemented with either growth factors (GF) TGF-ß (5 ng mL-1) and IGF-I (10 ng mL-1), GlcN·HCl or GlcNAc at 1mM each or both. Six groups were compared according to medium supplementation: (a) SF control; (b) SF + GlcN·HCl; (c) SF + GlcNAc; (d) SF + GF; (e) SF + GF + GlcN·HCl; and (f) SF + GF + GlcNAc. Cell proliferation, proteoglycan, collagen I (COL1), and collagen II (COL2) synthesis were evaluated. RESULTS: The two glucosamines showed opposite effects in monolayer culture: GlcN·HCl significantly reduced proliferation and GlcNAc significantly augmented cellular metabolism. In the 30 days 3D culture, the GlcN·HCl added to GF stimulated cell proliferation more than when compared to GF only, but the proteoglycan synthesis was smaller than GF. However, GlcNAc added to GF improved the cell proliferation and proteoglycan synthesis more than when compared to GF and GF/GlcN·HCl. The synthesis of COL1 and COL2 was observed in all groups containing GF. CONCLUSION: GlcN·HCl and GlcNAc increased cell growth and stimulated COL2 synthesis in long-time 3D culture. However, only GlcNAc added to GF improved proteoglycan synthesis.

12.
Shock ; 48(1): 104-111, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27926586

RESUMO

Blunt chest trauma induces severe local and systemic inflammatory alterations and an accumulation of apoptotic polymorphonuclear granulocytes (aPMN) in the lungs, frequently followed by bacterial infection. Alveolar macrophages (AM) represent one of the main actors for their clearance. However, little is known regarding regulatory and influencing factors of AM efferocytic and phagocytic activities. In this context, we investigated the influence of impaired gas exchange on AM activity.Male rats underwent blunt chest trauma or sham procedure and aPMN or Escherichia coli (E. coli) were instilled. Subsequently, the efferocytic and phagocytic activities were assessed by analyzing AM obtained from bronchoalveolar lavage fluids at three time points. To determine whether efferocytic and phagocytic activities of AM are affected by shifting gas concentrations, AM were subjected in vitro to hypoxic and hypercapnic conditions.Trauma significantly upregulated the capacity of AM to ingest E. coli starting 24 h after trauma, whereas the aPMN uptake rate remained virtually unchanged. In vitro, AM reacted to hypercapnic conditions by enhanced efferocytosis associated with increased release of anti-inflammatory cytokines. Additionally, phagocytosis and the pro-inflammatory reaction of AM after trauma appeared to be impaired. In contrast, hypoxic conditions displayed no regulatory effect on AM.In conclusion, blunt chest trauma enhances phagocytic activity of AM. On the other hand, hypercapnic conditions in the lungs may significantly contribute to the clearance of aPMN. The application of CO2 in clinical settings must be properly assessed, with the benefits of CO2 balanced against the detrimental effects of impaired bacterial clearance.


Assuntos
Inflamação/imunologia , Macrófagos Alveolares/imunologia , Traumatismos Torácicos/imunologia , Ferimentos não Penetrantes/imunologia , Animais , Apoptose/genética , Apoptose/fisiologia , Escherichia coli/patogenicidade , Granulócitos/imunologia , Inflamação/microbiologia , Masculino , Fagocitose/genética , Fagocitose/fisiologia , Ratos , Ratos Sprague-Dawley , Traumatismos Torácicos/microbiologia , Ferimentos não Penetrantes/microbiologia
13.
Sci Rep ; 5: 7959, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25609542

RESUMO

Neuronal cell cultures offer a crucial tool to mechanistically analyse regeneration in the nervous system. Despite the increasing importance of zebrafish (Danio rerio) as an in vivo model in neurobiological and biomedical research, in vitro approaches to the nervous system are lagging far behind and no method is currently available for establishing enriched neuronal cell cultures. Here we show that magnetic-activated cell sorting (MACS) can be used for the large-scale generation of neuronal-restricted progenitor (NRP) cultures from embryonic zebrafish. Our findings provide a simple and semi-automated method that is likely to boost the use of neuronal cell cultures as a tool for the mechanistic dissection of key processes in neuronal regeneration and development.


Assuntos
Embrião não Mamífero/citologia , Citometria de Fluxo/métodos , Neurônios/citologia , Peixe-Zebra/embriologia , Animais , Agregação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Separação Celular , Células Cultivadas , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Tretinoína/farmacologia , Proteínas de Peixe-Zebra/metabolismo
14.
Shock ; 19(6): 519-25, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12785006

RESUMO

Severe blunt chest trauma remains an important injury with high morbidity and mortality. However, the associated immunological alterations are poorly understood. Existing big animal models require large-scale settings, are often too expensive, and research products for immunological studies are limited. In this study we aimed to establish a new model of blunt, isolated and bilateral chest trauma in mice and to characterize its effects on physiological and inflammatory variables. Male C3H/HeN mice (n = 9-10/group) were anesthetized and a femoral artery was catheterized. The animals were subjected to trauma or sham procedure and monitored for 180 min. Blunt chest trauma was induced by a blast wave focused on the thorax. Trauma intensity was optimized by varying the exposure distance. Blood pressure, heart rate, respiratory rate, arterial blood gases and plasma cytokine levels were measured. Macroscopic and microscopic examinations were performed. In addition, outcome was evaluated in a 10-day survival study. Chest trauma caused a drop (P < 0.05) in blood pressure and heart rate, which partly recovered. Blood gases revealed hypoxemia and hypercarbia (P < 0.05) 180 min after trauma. There was marked damage to the lungs but none to abdominal organs. Histologically, the characteristic signs of a bilateral lung contusion with alveolar and intrabronchial hemorrhage were found. Plasma interleukin-6 and tumor necrosis factor alpha were considerably increased after 180 min. Blunt chest trauma resulted in an early mortality of 10% without subsequent death. On the basis of these findings, this novel mouse model of blunt chest trauma appears suitable for detailed studies on immunological effects of lung contusion.


Assuntos
Contusões/etiologia , Citocinas/sangue , Inflamação/fisiopatologia , Pneumopatias/etiologia , Mecânica Respiratória/fisiologia , Traumatismos Torácicos/fisiopatologia , Ferimentos não Penetrantes/fisiopatologia , Animais , Pressão Sanguínea , Contusões/patologia , Contusões/fisiopatologia , Modelos Animais de Doenças , Frequência Cardíaca , Inflamação/etiologia , Inflamação/patologia , Pneumopatias/patologia , Pneumopatias/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Análise de Sobrevida , Traumatismos Torácicos/patologia , Fatores de Tempo , Ferimentos não Penetrantes/patologia
15.
J Trauma Acute Care Surg ; 76(2): 386-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24458045

RESUMO

BACKGROUND: Blunt chest trauma is an injury that enhances the morbidity and mortality rate, particularly in the context of polytrauma. Our previous studies showed local and systemic inflammatory alterations after blunt chest trauma in mice. This study was designed to determine whether alveolar macrophages (AMΦ) have an alleviative role in this posttraumatic inflammation. METHODS: AMΦ of male C3H/HeN mice were depleted by instillation of clodronate liposomes into the lung before blunt chest trauma induced by a single blast wave. In bronchoalveolar lavage, lung homogenates, plasma, and cell culture supernatants of Kupffer cells, peripheral blood mononuclear cells, splenic macrophages, and splenocytes isolated 2 hours or 24 hours after chest trauma mediator concentrations were determined by multiplex assay or enzyme-linked immunosorbent assay. RESULTS: In bronchoalveolar lavage, AMΦ depletion led to increased monocyte chemoattractant protein 1 and regulated and normal T cell expressed and secreted (RANTES) concentrations as well as an attenuated increase of interleukin 6 concentrations after chest trauma. Bronchoalveolar lavage keratinocyte-derived chemokine concentrations increased in nontraumatized but AMΦ-depleted animals with no further change after chest trauma. Cytokine concentrations in lung homogenates were altered in the same way as in bronchoalveolar lavage early after trauma. In the plasma of AMΦ-depleted animals, interleukin 6 concentrations were slightly decreased after chest trauma. Depletion of AMΦ abrogated the trauma-induced decrease of Kupffer cell chemokine release. Cytokine concentrations of blood monocytes, splenic macrophages, and splenocyte supernatants were not influenced by AMΦ depletion. CONCLUSION: These depletion experiments show that AMΦ ameliorate the inflammatory response after blunt chest trauma. Taken together, this study gives relevant insights into the regulative role of AMΦ during the local and systemic inflammation after lung contusion.


Assuntos
Líquido da Lavagem Broncoalveolar/citologia , Mediadores da Inflamação/sangue , Lesão Pulmonar/metabolismo , Macrófagos Alveolares/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/fisiopatologia , Ferimentos não Penetrantes/metabolismo , Animais , Movimento Celular , Quimiocina CCL5/análise , Quimiocina CCL5/metabolismo , Quimiocinas/sangue , Quimiocinas/metabolismo , Ácido Clodrônico/farmacologia , Contusões/metabolismo , Contusões/fisiopatologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Mediadores da Inflamação/metabolismo , Interleucina-6/sangue , Interleucina-6/metabolismo , Leucócitos Mononucleares/metabolismo , Lesão Pulmonar/fisiopatologia , Macrófagos Alveolares/citologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Distribuição Aleatória , Valores de Referência , Papel (figurativo) , Sensibilidade e Especificidade , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Ferimentos não Penetrantes/fisiopatologia
17.
Shock ; 37(2): 197-204, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22089191

RESUMO

The treatment of acute lung injury and septic complications after blunt chest trauma remains a challenge. Inhaled hydrogen sulfide (H2S) may cause a hibernation-like metabolic state, which refers to an attenuated systemic inflammatory response. Therefore, we tested the hypothesis that inhaled H2S-induced suspended animation may attenuate the inflammation after pulmonary contusion. Male Sprague-Dawley rats were subjected to blunt chest trauma (blast wave) or sham procedure and subsequently exposed to a continuous flow of H2S (100 ppm) or control gas for 6 h. Body temperature and activity were measured by an implanted transmitter. At 6, 24, or 48 h after trauma, animals were killed, and the cellular contents of bronchoalveolar lavage (BAL) as well as cytokine concentrations in BAL, plasma, and culture supernatants of blood mononuclear cells, Kupffer cells, splenic macrophages, and splenocytes were determined. Hydrogen sulfide inhalation caused a significant reduction in body temperature and activity. The trauma-induced increase in alveolar macrophage counts was abrogated 48 h after trauma when animals received H2S, whereas the trauma-induced increase in neutrophil counts was unaltered. Furthermore, H2S inhalation partially attenuated the mediator release in BAL and culture supernatants of Kupffer cells as well as splenic cells; it altered plasma cytokine concentrations but did not affect the trauma-induced changes in mononuclear cell culture supernatants. These findings indicate that inhaled H2S induced a reduced metabolic expenditure and partially attenuated inflammation after trauma. Nevertheless, in contrast to hypoxic- or pathogen-induced lung injury, H2S treatment appears to have no protective effect after blunt chest trauma.


Assuntos
Sulfeto de Hidrogênio/administração & dosagem , Ferimentos não Penetrantes/metabolismo , Administração por Inalação , Animais , Temperatura Corporal , Citocinas/metabolismo , Hipóxia , Inflamação , Células de Kupffer/citologia , Macrófagos/metabolismo , Masculino , Fagocitose , Ratos , Ratos Sprague-Dawley , Baço/citologia , Traumatismos Torácicos/terapia , Fatores de Tempo
18.
Shock ; 35(6): 610-7, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21330946

RESUMO

Blunt chest trauma impairs the outcome of multiply-injured patients. Lung contusion induces inflammatory alterations and Fas-dependent apoptosis of alveolar type 2 epithelial (AT2) cells has been described. The Fas/Fas ligand (FasL) system seems to exhibit a proinflammatory potential. We aimed to elucidate the involvement of the Fas/FasL system in the inflammatory response after lung contusion. Chest trauma was induced in male rats by a pressure wave. Soluble FasL concentrations were determined in bronchoalveolar lavage fluids and alveolar macrophage (AMΦ) supernatants. Alveolar macrophages and AT2 cells were isolated to determine the surface expression (FACS) of Fas/FasL, the mRNA expression (reverse transcriptase-polymerase chain reaction) of Fas, FasL, TNF-α, IL-6, and IL-10 and to measure the release of IL-6 and IL-10 after culture with or without stimulation with FasL. After chest trauma, FasL concentration was increased in bronchoalveolar lavage fluid, and AMΦ supernatants and Fas and FasL protein were downregulated on AMΦs and unchanged on AT2 cells. The mRNA expression of Fas was increased in AMΦs and AT2 cells and that of FasL only in AMΦs isolated after lung contusion. Fas ligand stimulation further enhanced IL-6 and suppressed IL-10 release in AMΦs after trauma.The results indicate that the Fas/FasL system is activated after chest trauma, and FasL is associated with the inflammatory response after lung contusion. The proinflammatory response of AMΦs is enhanced by FasL stimulation. Both AMΦs and AT2 cells seem to contribute to the mediator release after lung contusion. These results confirm the importance of the Fas/FasL system in the inflammatory response after chest trauma.


Assuntos
Proteína Ligante Fas/imunologia , Inflamação/imunologia , Macrófagos Alveolares/metabolismo , Traumatismos Torácicos/imunologia , Ferimentos não Penetrantes/imunologia , Receptor fas/biossíntese , Animais , Apoptose/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Células Epiteliais/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Alvéolos Pulmonares/citologia , RNA Mensageiro/metabolismo , Ratos
19.
Shock ; 36(6): 621-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21921831

RESUMO

Blunt chest trauma is known to induce a pulmonary invasion of short-lived polymorphonuclear neutrophils and apoptosis of alveolar epithelial type 2 (AT2) cells. Apoptotic cells are removed by alveolar macrophages (AMΦ). We hypothesized that chest trauma alters the phagocytic response of AMΦ as well as the mediator release of AMΦ during phagocytosis. To study this, male Sprague-Dawley rats were subjected to blunt chest trauma. Phagocytosis assays were performed in AMΦ isolated 2 or 24 h after trauma with apoptotic cells or opsonized beads. Phagocytosis of apoptotic AT2 cells by unstimulated AMΦ was significantly increased 2 h after trauma. At 24 h, AMΦ from traumatized animals, stimulated with phorbol-12-myristate-13-acetate, ingested significantly more apoptotic polymorphonuclear neutrophils than AMΦ from sham animals. Alveolar macrophages after trauma released significantly higher levels of tumor necrosis factor α, macrophage inflammatory protein 1α, and cytokine-induced neutrophil chemoattractant 1 when they incorporated latex beads, but significantly lower levels of interleukin 1ß and macrophage inflammatory protein 1α when they ingested apoptotic cells. In vivo, phagocytosis of intratracheally instilled latex beads was decreased in traumatized rats. The bronchoalveolar lavage concentrations of the phagocytosis-supporting surfactant proteins A and D after blunt chest trauma were slightly decreased, whereas surfactant protein D mRNA expression in AT2 cells was significantly increased after 2 h. These findings indicate that chest trauma augments the phagocytosis of apoptotic cells by AMΦ. Phagocytosis of opsonized beads enhances and ingestion of apoptotic cells downregulates the immunologic response following lung contusion. Our data emphasize the important role of phagocytosis during posttraumatic inflammation after lung contusion.


Assuntos
Macrófagos Alveolares/citologia , Macrófagos Alveolares/metabolismo , Fagocitose/fisiologia , Traumatismos Torácicos/imunologia , Ferimentos e Lesões/imunologia , Animais , Apoptose/genética , Apoptose/fisiologia , Masculino , Proteína A Associada a Surfactante Pulmonar/genética , Proteína A Associada a Surfactante Pulmonar/metabolismo , Proteína D Associada a Surfactante Pulmonar/genética , Proteína D Associada a Surfactante Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismos Torácicos/metabolismo , Ferimentos e Lesões/metabolismo
20.
Shock ; 35(4): 396-402, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20938376

RESUMO

Inhaling hydrogen sulfide (H2S) reduced energy expenditure resulting in hypothermia. Because the inflammatory effects of either hypothermia alone or H2S per se still are a matter of debate, we tested the hypothesis whether inhaled H2S amplifies the hypothermia-related modulation of the inflammatory response. Fifteen hours after cecal ligation and puncture or sham laparotomy, anesthetized and mechanically ventilated normothermic and hypothermic mice (core temperature kept at 38°C and 27°C, respectively) received either 100 ppm H2S or vehicle. In the sham-operated animals, inhaled H2S and hypothermia alone comparably reduced the plasma chemokine and IL-6 levels, but combining hypothermia and inhaled H2S had no additional effect. The lung tissue cytokine and chemokine patterns revealed a similar response. During sepsis, inhaled H2S reduced the blood cytokine concentrations only, without effects on the plasma chemokine or the lung tissue levels. Again, inhaled H2S had no major additional effect during hypothermia. With or without sepsis, inhaled H2S and hypothermia alone comparably reduced the lung tissue heme oxygenase 1 expression, whereas inhaled H2S had no additional effect during hypothermia. Lung tissue nuclear transcription factor κB activation was reduced by combining H2S with hypothermia in the sham-operated animals, whereas it was increased by inhaled H2S during sepsis. Hypothermia amplified this response. Hence, during anesthesia and mechanical ventilation, inhaled H2S exerted anti-inflammatory effects, which were, however, not amplified by adding deliberate hypothermia. Sepsis attenuated these anti-inflammatory effects of inhaled H2S, which were at least in part independent of the nuclear transcription factor κB pathway.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Hipotermia/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/etiologia , Choque Séptico/imunologia , Choque Séptico/metabolismo , Animais , Quimiocina CCL2/metabolismo , Quimiocina CCL8/metabolismo , Quimiocinas/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Heme Oxigenase-1/metabolismo , Hemodinâmica/efeitos dos fármacos , Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA