Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(47): e202301224, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37328428

RESUMO

Lysocin E (1 a) and WAP-8294A2 (2 a) are peptidic natural products with 37- and 40-membered macrocycles, respectively. Compounds 1 a and 2 a have potent antibacterial activities against Gram-positive bacteria and share a unique mode of action. The electron-rich indole ring of d-Trp-10 of 1 a and 2 a interacts with the electron-deficient benzoquinone ring of menaquinone, which is a co-enzyme in the bacterial respiratory chain. Formation of the electron-donor-acceptor complex causes membrane disruption, leading to cell death. Despite the promising activities of 1 a and 2 a, the susceptibility of Trp-10 to oxidative degradation potentially deters the development of these compounds as antibacterial drugs. To address this issue, we replaced the indole ring with more oxidation-resistant aromatics having a similar shape and electron-rich character. Specifically, analogues with benzofuran (1 b/2 b), benzothiophene (1 c/2 c), and 1-naphthalene (1 d/2 d) rings were designed, and chemically prepared by full solid-phase total syntheses. Antibacterial assays of the six analogues revealed similar activities of 1 d/2 d and markedly reduced activities of 1 b/2 b and 1 c/2 c compared with 1 a/2 a. Equipotent 1 d and 2 d both showed high resistance to oxidation by peroxyl radicals. Hence, the present study demonstrates a new molecular editing strategy for conferring oxidation stability on natural products with pharmacologically useful functions.


Assuntos
Antibacterianos , Produtos Biológicos , Antibacterianos/química , Vitamina K 2 , Testes de Sensibilidade Microbiana
2.
Chemistry ; 29(43): e202301225, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37198137

RESUMO

Tryptophan (Trp) plays a unique role in peptides and proteins as its indole ring possesses an electron-rich character and an N1-H hydrogen-bond donor. Because of its non-rotationally symmetric structure, synthetic alterations of the orientation of the indole ring would modulate the intrinsic structures and functions of peptides and proteins. Here we developed synthetic routes to the five Trp isomers in which the C3-substitution of the indole ring was changed to the C2/4/5/6/7-substitutions, and applied the five monomers to Fmoc-based solid-phase peptide synthesis. Specifically, the five monomers were prepared via Negishi cross-coupling reactions of C2/4/5/6/7-iodoindoles. To demonstrate the applicability of the monomers to the solid-phase synthesis, the five Trp isomers of macrocyclic antibiotic lysocin E were selected as target molecules and synthesized through peptide elongation, on-resin macrocyclization, and global deprotection. The Trp isomers displayed markedly weaker antibacterial activity than the parent natural product, revealing the biological importance of the precise three-dimensional shape of the original Trp residue of lysocin E. The present methods for the preparation and application of these five Trp isomers provide a new strategy for analyzing and modifying the specific functions of numerous Trp-containing peptides and proteins beyond this study.


Assuntos
Técnicas de Síntese em Fase Sólida , Triptofano , Triptofano/química , Peptídeos/química , Antibacterianos/farmacologia , Antibacterianos/química , Indóis
3.
Antimicrob Agents Chemother ; 66(9): e0017122, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35969044

RESUMO

Tuberculosis remains a public health crisis and a health security threat. There is an urgent need to develop new antituberculosis drugs with novel modes of action to cure drug-resistant tuberculosis and shorten the chemotherapy period by sterilizing tissues infected with dormant bacteria. Lysocin E is an antibiotic that showed antibacterial activity against Staphylococcus aureus by binding to its menaquinone (commonly known as vitamin K2). Unlike S. aureus, menaquinone is essential in both growing and dormant Mycobacterium tuberculosis. This study aims to evaluate the antituberculosis activities of lysocin E and decipher its mode of action. We show that lysocin E has high in vitro activity against both drug-susceptible and drug-resistant Mycobacterium tuberculosis var. tuberculosis and dormant mycobacteria. Lysocin E is likely bound to menaquinone, causing M. tuberculosis membrane disruption, inhibition of oxygen consumption, and ATP synthesis. Thus, we have concluded that the high antituberculosis activity of lysocin E is attributable to its synergistic effects of membrane disruption and respiratory inhibition. The efficacy of lysocin E against intracellular M. tuberculosis in macrophages was lower than its potent activity against M. tuberculosis in culture medium, probably due to its low ability to penetrate cells, but its efficacy in mice was still superior to that of streptomycin. Our findings indicate that lysocin E is a promising lead compound for the development of a new tuberculosis drug that cures drug-resistant and latent tuberculosis in a shorter period.


Assuntos
Antituberculosos , Mycobacterium tuberculosis , Peptídeos Cíclicos , Trifosfato de Adenosina/metabolismo , Animais , Antituberculosos/química , Antituberculosos/farmacologia , Camundongos , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Staphylococcus aureus/metabolismo , Estreptomicina/farmacologia , Tuberculose , Vitamina K 2/metabolismo
4.
PLoS Pathog ; 16(4): e1008469, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32324807

RESUMO

The molecular mechanisms that allow pathogenic bacteria to infect animals have been intensively studied. On the other hand, the molecular mechanisms by which bacteria acquire virulence functions are not fully understood. In the present study, we experimentally evaluated the evolution of a non-pathogenic strain of Escherichia coli in a silkworm infection model and obtained pathogenic mutant strains. As one cause of the high virulence properties of E. coli mutants, we identified amino acid substitutions in LptD (G580S) and LptE (T95I) constituting the lipopolysaccharide (LPS) transporter, which translocates LPS from the inner to the outer membrane and is essential for E. coli growth. The growth of the LptD and LptE mutants obtained in this study was indistinguishable from that of the parent strain. The LptD and LptE mutants exhibited increased secretion of outer membrane vesicles containing LPS and resistance against various antibiotics, antimicrobial peptides, and host complement. In vivo cross-linking studies revealed that the conformation of the LptD-LptE complex was altered in the LptD and LptE mutants. Furthermore, several clinical isolates of E. coli carried amino acid substitutions of LptD and LptE that conferred resistance against antimicrobial substances. This study demonstrated an experimental evolution of bacterial virulence properties in an animal infection model and identified functional alterations of the growth-essential LPS transporter that led to high bacterial virulence by conferring resistance against antimicrobial substances. These findings suggest that non-pathogenic bacteria can gain virulence traits by changing the functions of essential genes, and provide new insight to bacterial evolution in a host environment.


Assuntos
Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Animais , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Bombyx/microbiologia , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Lipopolissacarídeos/metabolismo , Modelos Moleculares , Ligação Proteica , Virulência/fisiologia
5.
Mol Cell ; 53(3): 393-406, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24507715

RESUMO

Although thousands of long noncoding RNAs (lncRNAs) are localized in the nucleus, only a few dozen have been functionally characterized. Here we show that nuclear enriched abundant transcript 1 (NEAT1), an essential lncRNA for the formation of nuclear body paraspeckles, is induced by influenza virus and herpes simplex virus infection as well as by Toll-like receptor3-p38 pathway-triggered poly I:C stimulation, resulting in excess formation of paraspeckles. We found that NEAT1 facilitates the expression of antiviral genes including cytokines such as interleukin-8 (IL8). We found that splicing factor proline/glutamine-rich (SFPQ), a NEAT1-binding paraspeckle protein, is a repressor of IL8 transcription, and that NEAT1 induction relocates SFPQ from the IL8 promoter to the paraspeckles, leading to transcriptional activation of IL8. Together, our data show that NEAT1 plays an important role in the innate immune response through the transcriptional regulation of antiviral genes by the stimulus-responsive cooperative action of NEAT1 and SFPQ.


Assuntos
Imunidade Inata/genética , Interleucina-8/genética , RNA Longo não Codificante/fisiologia , Proteínas de Ligação a RNA/metabolismo , Regulação da Expressão Gênica , Células HeLa , Herpesvirus Humano 1/imunologia , Humanos , Vírus do Sarampo/imunologia , Orthomyxoviridae/imunologia , Fator de Processamento Associado a PTB , Regiões Promotoras Genéticas , Transporte Proteico , RNA Longo não Codificante/genética , Transcrição Gênica
6.
Genomics ; 113(3): 1534-1542, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33771633

RESUMO

Enterococcus faecalis is a common human gut commensal bacterium. While some E. faecalis strains are probiotic, others are known to cause opportunistic infections, and clear distinction between these strains is difficult using traditional taxonomic approaches. In this study, we completed the genome sequencing of EF-2001, a probiotic strain, using our in-house hybrid assembly approach. Comparative analysis showed that EF-2001 was devoid of cytolysins, major factors associated with pathogenesis, and was phylogenetically distant from pathogenic E. faecalis V583. Genomic analysis of strains with a publicly available complete genome sequence predicted that drug-resistance genes- dfrE, efrA, efrB, emeA, and lsaA were present in all strains, and EF-2001 lacked additional drug-resistance genes. Core- and pan-genome analyses revealed a higher degree of genomic fluidity. We found 49 genes specific to EF-2001, further characterization of which may provide insights into its diverse biological activities. Our comparative genomic analysis approach could help predict the pathogenic or probiotic potential of E. faecalis leading to an early distinction based on genome sequences.


Assuntos
Enterococcus faecalis , Probióticos , Enterococcus faecalis/genética , Genoma Bacteriano , Genômica , Humanos , Fatores de Virulência/genética
7.
J Infect Dis ; 221(11): 1795-1804, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-31912866

RESUMO

The regulatory network of virulence factors produced by the opportunistic pathogen Staphylococcus aureus is unclear and the functions of many uncharacterized genes in its genome remain to be elucidated. In this study, we screened 380 genes whose function was unassigned, utilizing gene-disrupted transposon mutants of the community-acquired methicillin-resistant S. aureus USA300 for pathogenicity in silkworms. We identified 10 strains with reduced silkworm killing ability. Among them, 8 displayed reduced virulence in a mouse model as evidenced by reduced colony-forming units in organs of infected mice. The role of each gene in pathogenicity was further confirmed by complementation and pathogenicity tests in silkworms, where we found that the phenotype was not restored in 1 strain. Additionally, some of the mutants displayed reduced hemolysis, proteolysis, pigment production, and survival in murine RAW 264.7 monocyte-macrophage cells. These newly identified genes involved in virulence will enhance our understanding of the pathogenicity of S. aureus.


Assuntos
Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Animais , Bombyx/microbiologia , Modelos Animais de Doenças , Feminino , Genes Bacterianos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Infecções Estafilocócicas/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/patogenicidade , Virulência/genética , Sequenciamento Completo do Genoma
8.
Microbiol Immunol ; 63(2): 41-50, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30666711

RESUMO

Silkworm, Bombyx mori, has various advantages as an experimental animal, such as the low cost for rearing and fewer ethical problems. Models utilizing silkworms of infection with pathogenic bacteria have been established for identification of genes encoding virulence factors by large-scale in vivo screening. In this review, we describe recent progress in the study of silkworm infection models for elucidating the mechanisms of fungi infection. Silkworm infection models have been established for Candida albicans, Candida tropicalis, Candida glabrata and Cryptococcus neoformans, which are yeast type fungi, and Aspergillus fumigatus, Arthroderma vanbreuseghemii, Arthroderma benhamiae, Microsporum canis, Trichophyton rubrum, and Rhizopus oryzae, which are filamentous fungi. Novel genes encoding virulence factors in C. albicans and C. glabrata have been identified by using the silkworm infection models. We here outline the benefits of using silkworm infection models and a strategy for identifying the genes responsible for pathogenicity of microorganisms such as fungi. © 2019 The Authors. Microbiology and Immunology Published by The Societies and John Wiley & Sons Australia, Ltd.


Assuntos
Bombyx/microbiologia , Modelos Animais de Doenças , Fungos/patogenicidade , Micoses/microbiologia , Animais , Bactérias/patogenicidade , Candida/classificação , Candida/patogenicidade , Candidíase/microbiologia , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Fungos/classificação , Fungos/genética , Virulência/genética , Fatores de Virulência/genética
9.
J Org Chem ; 83(13): 6924-6935, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29019678

RESUMO

WAP-8294A2 (lotilibcin, 1) is a potent antibiotic with superior in vivo efficacy to vancomycin against methicillin-resistant Staphylococcus aureus (MRSA). Despite the great medical importance, its molecular mode of action remains unknown. Here we report the total synthesis of complex macrocyclic peptide 1 comprised of 12 amino acids with a ß-hydroxy fatty-acid chain, and its deoxy analogue 2. A full solid-phase synthesis of 1 and 2 enabled their rapid assembly and the first detailed investigation of their functions. Compounds 1 and 2 were equipotent against various strains of Gram-positive bacteria including MRSA. We present evidence that the antimicrobial activities of 1 and 2 are due to lysis of the bacterial membrane, and their membrane-disrupting effects depend on the presence of menaquinone, an essential factor for the bacterial respiratory chain. The established synthetic routes and the menaquinone-targeting mechanisms provide valuable information for designing and developing new antibiotics based on their structures.


Assuntos
Anti-Infecciosos/síntese química , Anti-Infecciosos/farmacologia , Candida/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Depsipeptídeos/síntese química , Depsipeptídeos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Vitamina K 2/farmacologia , Candida/classificação , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana
10.
J Biol Chem ; 291(36): 18608-18619, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27422825

RESUMO

We identified SA1684 as a Staphylococcus aureus virulence gene using a silkworm infection model. The SA1684 gene product carried the DUF402 domain, which is found in RNA-binding proteins, and had amino acid sequence similarity with a nucleoside diphosphatase, Streptomyces coelicolor SC4828 protein. The SA1684-deletion mutant exhibited drastically decreased virulence, in which the LD50 against silkworms was more than 10 times that of the parent strain. The SA1684-deletion mutant also exhibited decreased exotoxin production and colony-spreading ability. Purified SA1684 protein had Mn(2+)- or Co(2+)-dependent hydrolyzing activity against nucleoside diphosphates. Alanine substitutions of Tyr-88, Asp-106, and Asp-123/Glu-124, which are conserved between SA1684 and SC4828, diminished the nucleoside diphosphatase activity. Introduction of the wild-type SA1684 gene restored the hemolysin production of the SA1684-deletion mutant, whereas none of the alanine-substituted SA1684 mutant genes restored the hemolysin production. RNA sequence analysis revealed that SA1684 is required for the expression of the virulence regulatory genes agr, sarZ, and sarX, as well as metabolic genes involved in glycolysis and fermentation pathways. These findings suggest that the novel nucleoside diphosphatase SA1684 links metabolic pathways and virulence gene expression and plays an important role in S. aureus virulence.


Assuntos
Hidrolases Anidrido Ácido , Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica/fisiologia , Infecções Estafilocócicas , Staphylococcus aureus , Fatores de Virulência , Hidrolases Anidrido Ácido/química , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Infecções Estafilocócicas/enzimologia , Infecções Estafilocócicas/genética , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Staphylococcus aureus/patogenicidade , Streptomyces coelicolor/enzimologia , Streptomyces coelicolor/genética , Streptomyces coelicolor/patogenicidade , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
Nat Chem Biol ; 11(2): 127-33, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25485686

RESUMO

To obtain therapeutically effective new antibiotics, we first searched for bacterial culture supernatants with antimicrobial activity in vitro and then performed a secondary screening using the silkworm infection model. Through further purification of the in vivo activity, we obtained a compound with a previously uncharacterized structure and named it 'lysocin E'. Lysocin E interacted with menaquinone in the bacterial membrane to achieve its potent bactericidal activity, a mode of action distinct from that of any other known antibiotic, indicating that lysocin E comprises a new class of antibiotic. This is to our knowledge the first report of a direct interaction between a small chemical compound and menaquinone that leads to bacterial killing. Furthermore, lysocin E decreased the mortality of infected mice. To our knowledge, lysocin E is the first compound identified and purified by quantitative measurement of therapeutic effects in an invertebrate infection model that exhibits robust in vivo effects in mammals.


Assuntos
Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Descoberta de Drogas/métodos , Bactérias Gram-Positivas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Vitamina K 2/antagonistas & inibidores , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriólise/efeitos dos fármacos , Bombyx/microbiologia , Membrana Celular/metabolismo , Modelos Animais de Doenças , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Lysobacter/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Vitamina K 2/metabolismo
13.
Pharm Biol ; 55(1): 1256-1262, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28253823

RESUMO

CONTEXT: Antibiotic resistance is a serious problem worldwide. Searching for new potential agents is, therefore, essential. The bark of Sesbania grandiflora (L.) Pers. (Fabaceae) has been used in folk medicine against various diseases. OBJECTIVE: To investigate the antibacterial activity of S. grandiflora bark and explore the therapeutic effect of the highest potent fraction. MATERIALS AND METHODS: Bacteria and healthy silkworms were exposed to three fractionated extracts (3.1-400 mg/mL) of S. grandiflora bark from hexane (HXF), chloroform (CFF), and ethyl acetate (EAF). The sets of bacteria were incubated at 37 °C while silkworms were kept at 27 °C for 24 h. To evaluate the therapeutic effect, silkworms infected with bacteria were exposed to the extracts (0.5-60 mg/mL) and incubated at 27 °C for 52 h. Qualitative analysis of the most potent extract was done using HPLC. RESULTS: EAF showed the highest activity with MIC against methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant enterococci (VRE) of 1.6 and 0.4 mg/mL, respectively, and against Gram-negative Escherichia coli and Pseudomonas aeruginosa of 6.2 and 3.1 mg/mL, respectively. It is nontoxic to silkworms with LC50 >400 mg/mL and has high therapeutic effect on infected silkworms with EC50 of 1.9 mg/mL. EAF consists of at least five major compounds, one of them is gallic acid. The activity of EAF is higher than the sum of individual activities of separated compounds. DISCUSSION AND CONCLUSION: These results suggest that EAF is a promising antibacterial extract, suitable for further investigation in rodents infected with drug resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Bombyx/efeitos dos fármacos , Bombyx/microbiologia , Extratos Vegetais/farmacologia , Sesbania , Animais , Antibacterianos/isolamento & purificação , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Testes de Sensibilidade Microbiana/métodos , Casca de Planta , Extratos Vegetais/isolamento & purificação , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia
14.
J Infect Dis ; 213(2): 295-304, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26160745

RESUMO

Phenol-soluble modulins (PSMs) are Staphylococcus aureus cytolytic toxins that lyse erythrocytes and neutrophils and have important functions in the S. aureus infectious process. The molecular mechanisms of PSM secretion, however, are not well understood. Here we report that knockout of the multidrug-resistance ABC transporter AbcA, which contributes to S. aureus resistance against antibiotics and chemicals, diminished the secreted amount of PSM, leading to the accumulation of PSM in the intracellular fraction. The amount of PSM in the culture supernatants of the abcA knockout mutants was restored by introduction of the wild-type abcA gene, whereas it was not completely restored by introduction of mutant abcA genes encoding AbcA mutant proteins carrying amino acid substitutions in the adenosine triphosphate binding motifs. The abcA knockout mutant exhibited attenuated virulence in a mouse systemic infection model. These findings suggest that the multidrug resistance transporter AbcA secretes PSMs and contributes to S. aureus virulence.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Toxinas Bacterianas/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Deleção de Genes , Camundongos , Percepção de Quorum/fisiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/patogenicidade , Transativadores/genética , Transativadores/metabolismo , Virulência
15.
Angew Chem Int Ed Engl ; 56(39): 11865-11869, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28727238

RESUMO

Polyoxins J (1 a) and L (1 b) are important nucleoside antibiotics. The complex and densely functionalized dipeptide structures of 1 a and 1 b contain thymine and uracil nucleobases, respectively. Herein we report the unified total synthesis of 1 a, 1 b, and their artificial analogues 1 c and 1 d with trifluorothymine and fluorouracil structures. Decarbonylative radical coupling between α-alkoxyacyl tellurides and a chiral glyoxylic oxime ether led to chemo- and stereoselective construction of the ribonucleoside α-amino acid structures of 1 a-d without damaging the preinstalled nucleobases. The high applicability of the radical-based methodology was further demonstrated by preparation of the trihydroxynorvaline moiety of 1 a-d. The two amino acid fragments were connected and elaborated into 1 a-d (longest linear sequence: 11 steps). Compounds 1 a and 1 b assembled in this way exhibited potent activity against true fungi, while only 1 d was active against Gram-positive bacteria.

16.
Chemistry ; 22(47): 16912-16919, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739191

RESUMO

Lysocin E (1) is a structurally complex 37-membered depsipeptide comprising 12 amino-acid residues with an N-methylated amide and an ester linkage. Compound 1 binds to menaquinone (MK) in the bacterial membrane to exert its potent bactericidal activity. To decipher the biologically important functionalities within this unique antibiotic, we performed a comprehensive structure-activity relationship (SAR) study by systematically changing the side-chain structures of l-Thr-1, d-Arg-2, N-Me-d-Phe-5, d-Arg-7, l-Glu-8, and d-Trp-10. First, we achieved total synthesis of the 14 new side-chain analogues of 1 by employing a solid-phase strategy. We then evaluated the MK-dependent liposomal disruption and antimicrobial activity against Staphylococcus aureus by 1 and its analogues. Correlating data between the liposome and bacteria experiments revealed that membrane lysis was mainly responsible for the antibacterial functions. Altering the cationic guanidine moiety of d-Arg-2/7 to a neutral amide, and the C7-acyl group of l-Thr-1 to the C2 or C11 counterpart decreased the antimicrobial activities four- or eight-fold. More drastically, chemical mutation of d-Trp-10 to d-Ala-10 totally abolished the bioactivities. These important findings led us to propose the biological roles of the side-chain functionalities.


Assuntos
Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Cátions , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Relação Estrutura-Atividade
17.
Arch Microbiol ; 198(9): 839-45, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27541998

RESUMO

Infectious diseases threaten global health due to the ability of microbes to acquire resistance against clinically used antibiotics. Continuous discovery of antibiotics with a novel mode of action is thus required. Actinomycetes and fungi are currently the major sources of antibiotics, but the decreasing rate of discovery of novel antibiotics suggests that the focus should be changed to previously untapped groups of microbes. Lysobacter species have a genome size of ~6 Mb with a relatively high G + C content of 61-70 % and are characterized by their ability to produce peptides that damage the cell walls or membranes of other microbes. Genome sequence analysis revealed that each Lysobacter species has gene clusters for the production of 12-16 secondary metabolites, most of which are peptides, thus making them 'peptide production specialists'. Given that the number of antibiotics isolated is much lower than the number of gene clusters harbored, further intensive studies of Lysobacter are likely to unearth novel antibiotics with profound biomedical applications. In this review, we summarize the structural diversity, activity and biosynthesis of lysobacterial antibiotics and highlight the importance of Lysobacter species for antibiotic production.


Assuntos
Antibacterianos , Produtos Biológicos , Lysobacter/química , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Genoma , Lysobacter/genética
18.
J Biol Chem ; 289(20): 14412-21, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24706746

RESUMO

A heightened immune response, in which immune responses are primed by repeated exposure to a pathogen, is an important characteristic of vertebrate adaptive immunity. In the present study, we examined whether invertebrate animals also exhibit a primed immune response. The LD50 of Gram-negative enterohemorrhagic Escherichia coli O157:H7 Sakai in silkworms was increased 100-fold by pre-injection of heat-killed Sakai cells. Silkworms pre-injected with heat-killed cells of a Gram-positive bacterium, Staphylococcus aureus, did not have resistance to Sakai. Silkworms preinjected with enterohemorrhagic E. coli peptidoglycans, cell surface components of bacteria, were resistant to Sakai infection. Silkworms preinjected with S. aureus peptidoglycans, however, were not resistant to Sakai. Silkworms preinjected with heat-killed Sakai cells showed persistent resistance to Sakai infection even after pupation. Repeated injection of heat-killed Sakai cells into the silkworms induced earlier and greater production of antimicrobial peptides than a single injection of heat-killed Sakai cells. These findings suggest that silkworm recognition of Gram-negative peptidoglycans leads to a primed immune reaction and increased resistance to a second round of bacterial infection.


Assuntos
Bombyx/imunologia , Bombyx/microbiologia , Resistência à Doença/imunologia , Escherichia coli O157/fisiologia , Peptidoglicano/farmacologia , Staphylococcus aureus/fisiologia , Animais , Bombyx/efeitos dos fármacos
19.
J Biol Chem ; 289(12): 8420-31, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24492613

RESUMO

We previously identified CvfA (SA1129) as a Staphylococcus aureus virulence factor using a silkworm infection model. S. aureus cvfA-deleted mutants exhibit decreased expression of the agr locus encoding a positive regulator of hemolysin genes and decreased hemolysin production. CvfA protein hydrolyzes a 2',3'-cyclic phosphodiester bond at the RNA 3' terminus, producing RNA with a 3'-phosphate (3'-phosphorylated RNA, RNA with a 3'-phosphate). Here, we report that the cvfA-deleted mutant phenotype (decreased agr expression and hemolysin production) was suppressed by disrupting pnpA-encoding polynucleotide phosphorylase (PNPase) with 3'- to 5'-exonuclease activity. The suppression was blocked by introducing a pnpA-encoding PNPase with exonuclease activity but not by a pnpA-encoding mutant PNPase without exonuclease activity. Therefore, loss of PNPase exonuclease activity suppressed the cvfA-deleted mutant phenotype. Purified PNPase efficiently degraded RNA with 2',3'-cyclic phosphate at the 3' terminus (2',3'-cyclic RNA), but it inefficiently degraded 3'-phosphorylated RNA. These findings indicate that 3'-phosphorylated RNA production from 2',3'-cyclic RNA by CvfA prevents RNA degradation by PNPase and contributes to the expression of agr and hemolysin genes. We speculate that in the cvfA-deleted mutant, 2',3'-cyclic RNA is not converted to the 3'-phosphorylated form and is efficiently degraded by PNPase, resulting in the loss of RNA essential for expressing agr and hemolysin genes, whereas in the cvfA/pnpA double-disrupted mutant, 2',3'-cyclic RNA is not degraded by PNPase, leading to hemolysin production. These findings suggest that CvfA and PNPase competitively regulate RNA degradation essential for S. aureus virulence.


Assuntos
Proteínas de Bactérias/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Polirribonucleotídeo Nucleotidiltransferase/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Bombyx/microbiologia , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Diester Fosfórico Hidrolases/genética , Polirribonucleotídeo Nucleotidiltransferase/genética , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/fisiologia , Fatores de Virulência/genética
20.
J Biol Chem ; 289(9): 5876-88, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24398686

RESUMO

Injection of a culture supernatant of Serratia marcescens into the bloodstream of the silkworm Bombyx mori increased the number of freely circulating immunosurveillance cells (hemocytes). Using a bioassay with live silkworms, serralysin metalloprotease was purified from the culture supernatant and identified as the factor responsible for this activity. Serralysin inhibited the in vitro attachment of both silkworm hemocytes and murine peritoneal macrophages. Incubation of silkworm hemocytes or murine macrophages with serralysin resulted in degradation of the cellular immune factor BmSPH-1 or calreticulin, respectively. Furthermore, serralysin suppressed in vitro phagocytosis of bacteria by hemocytes and in vivo bacterial clearance in silkworms. Disruption of the ser gene in S. marcescens attenuated its host killing ability in silkworms and mice. These findings suggest that serralysin metalloprotease secreted by S. marcescens suppresses cellular immunity by decreasing the adhesive properties of immunosurveillance cells, thereby contributing to bacterial pathogenesis.


Assuntos
Proteínas de Bactérias/imunologia , Bombyx/imunologia , Hemócitos/imunologia , Imunidade Celular , Metaloendopeptidases/imunologia , Monitorização Imunológica , Infecções por Serratia/imunologia , Serratia marcescens/imunologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bombyx/metabolismo , Bombyx/microbiologia , Hemócitos/metabolismo , Hemócitos/microbiologia , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/microbiologia , Macrófagos Peritoneais/patologia , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Infecções por Serratia/genética , Infecções por Serratia/microbiologia , Serratia marcescens/genética , Serratia marcescens/metabolismo , Serratia marcescens/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA