Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Chimia (Aarau) ; 76(5): 409-417, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069712

RESUMO

Over the past two and a half years the world has seen a desperate scramble to find a treatment for SARS-CoV-2 and COVID. In that regard, nucleosides have long served as the cornerstone to antiviral treatments due to their resemblance to the naturally occurring nucleosides that are involved in numerous biological processes. Unlike other viruses however, it was found early on during the search for drugs to treat SARS-1 and later MERS, that the coronaviruses possess a unique repair enzyme, an exonuclease (ExoN)[3] which rendered nucleoside analogues useless, thus negating their use.[4] During the current outbreak however, as both well-known and new nucleoside analogues were investigated or reinvestigated as a possible cure for SARS-CoV-2, several novel and/or lesser-known mechanisms of action were uncovered. This review briefly describes these mechanisms.

2.
Chembiochem ; 21(10): 1412-1417, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31899839

RESUMO

The structurally unique "fleximer" nucleosides were originally designed to investigate how flexibility in a nucleobase could potentially affect receptor-ligand recognition and function. Recently they have been shown to have low-to-sub-micromolar levels of activity against a number of viruses, including coronaviruses, filoviruses, and flaviviruses. However, the synthesis of distal fleximers in particular has thus far been quite tedious and low yielding. As a potential solution to this issue, a series of proximal fleximer bases (flex-bases) has been successfully coupled to both ribose and 2'-deoxyribose sugars by using the N-deoxyribosyltransferase II of Lactobacillus leichmannii (LlNDT) and Escherichia coli purine nucleoside phosphorylase (PNP). To explore the range of this facile approach, transglycosylation experiments on a thieno-expanded tricyclic heterocyclic base, as well as several distal and proximal flex-bases were performed to determine whether the corresponding fleximer nucleosides could be obtained in this fashion, thus potentially significantly shortening the route to these biologically significant compounds. The results of those studies are reported herein.


Assuntos
Escherichia coli/enzimologia , Lactobacillus leichmannii/enzimologia , Nucleosídeos/biossíntese , Pentosiltransferases/metabolismo , Purina-Núcleosídeo Fosforilase/metabolismo , Glicosilação , Estrutura Molecular
3.
Bioorg Med Chem ; 28(22): 115713, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-33128910

RESUMO

Flaviviruses, such as Dengue (DENV) and Zika (ZIKV) viruses, represent a severe health burden. There are currently no FDA-approved treatments, and vaccines against most flaviviruses are still lacking. We have developed several flexible analogues ("fleximers") of the FDA-approved nucleoside Acyclovir that exhibit activity against various RNA viruses, demonstrating their broad-spectrum potential. The current study reports activity against DENV and Yellow Fever Virus (YFV), particularly for compound 1. Studies to elucidate the mechanism of action suggest the flex-analogue triphosphates, especially 1-TP, inhibit DENV and ZIKV methyltransferases, and a secondary, albeit weak, effect on the DENV RNA-dependent RNA polymerase was observed at high concentrations. The results of these studies are reported herein.


Assuntos
Antivirais/farmacologia , Flavivirus/efeitos dos fármacos , Nucleosídeos/farmacologia , Antivirais/síntese química , Antivirais/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
4.
Bioorg Med Chem ; 27(13): 2883-2892, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126822

RESUMO

Anti-HIV-1 drug design has been notably challenging due to the virus' ability to mutate and develop immunity against commercially available drugs. The aims of this project were to develop a series of fleximer base analogues that not only possess inherent flexibility that can remain active when faced with binding site mutations, but also target a non-canonical, highly conserved target: the nucleocapsid protein of HIV (NC). The compounds were predicted by computational studies not to function via zinc ejection, which would endow them with significant advantages over non-specific and thus toxic zinc-ejectors. The target fleximer bases were synthesized using palladium-catalyzed cross-coupling techniques and subsequently tested against NC and HIV-1. The results of those studies are described herein.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/síntese química , HIV-1/genética , Proteínas do Nucleocapsídeo/genética , Humanos , Estrutura Molecular
5.
Molecules ; 24(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340431

RESUMO

Pyrrolo[3,2-d]pyrimidines have been studied for many years as potential lead compounds for the development of antiproliferative agents. Much of the focus has been on modifications to the pyrimidine ring, with enzymatic recognition often modulated by C2 and C4 substituents. In contrast, this work focuses on the N5 of the pyrrole ring by means of a series of novel N5-substituted pyrrolo[3,2-d]pyrimidines. The compounds were screened against the NCI-60 Human Tumor Cell Line panel, and the results were analyzed using the COMPARE algorithm to elucidate potential mechanisms of action. COMPARE analysis returned strong correlation to known DNA alkylators and groove binders, corroborating the hypothesis that these pyrrolo[3,2-d]pyrimidines act as DNA or RNA alkylators. In addition, N5 substitution reduced the EC50 against CCRF-CEM leukemia cells by up to 7-fold, indicating that this position is of interest in the development of antiproliferative lead compounds based on the pyrrolo[3,2-d]pyrimidine scaffold.


Assuntos
Antineoplásicos/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
6.
Molecules ; 24(17)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480658

RESUMO

Due to their ability to inhibit viral DNA or RNA replication, nucleoside analogues have been used for decades as potent antiviral therapeutics. However, one of the major limitations of nucleoside analogues is the development of antiviral resistance. In that regard, flexible nucleoside analogues known as "fleximers" have garnered attention over the years due to their ability to survey different amino acids in enzyme binding sites, thus overcoming the potential development of antiviral resistance. Acyclic fleximers have previously demonstrated antiviral activity against numerous viruses including Middle East Respiratory Syndrome coronavirus (MERS-CoV), Ebola virus (EBOV), and, most recently, flaviviruses such as Dengue (DENV) and Yellow Fever Virus (YFV). Due to these interesting results, a Structure Activity Relationship (SAR) study was pursued in order to analyze the effect of the pyrimidine functional group and acyl protecting group on antiviral activity, cytotoxicity, and conformation. The results of those studies are presented herein.


Assuntos
Antivirais/química , Antivirais/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Linhagem Celular Tumoral , Ebolavirus/efeitos dos fármacos , Humanos , Indicadores e Reagentes , Lipídeos/química , Conformação Molecular , Espectroscopia de Prótons por Ressonância Magnética , Relação Estrutura-Atividade
7.
Molecules ; 24(19)2019 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-31546633

RESUMO

Carbocyclic nucleosides have long played a role in antiviral, antiparasitic, and antibacterial therapies. Recent results from our laboratories from two structurally related scaffolds have shown promising activity against both Mycobacterium tuberculosis and several parasitic strains. As a result, a small structure activity relationship study was designed to further probe their activity and potential. Their synthesis and the results of the subsequent biological activity are reported herein.


Assuntos
Antiprotozoários/farmacologia , Nucleosídeos/análogos & derivados , Antibacterianos/química , Antibacterianos/farmacologia , Antiprotozoários/química , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Nucleosídeos/farmacologia , Relação Estrutura-Atividade
8.
Molecules ; 23(12)2018 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-30477147

RESUMO

A series of novel 5'-norcarbocyclic derivatives of 5-alkoxymethyl or 5-alkyltriazolyl-methyl uracil were synthesized and the activity of the compounds evaluated against both Gram-positive and Gram-negative bacteria. The growth of Mycobacterium smegmatis was completely inhibited by the most active compounds at a MIC99 of 67 µg/mL (mc²155) and a MIC99 of 6.7⁻67 µg/mL (VKPM Ac 1339). Several compounds also showed the ability to inhibit the growth of attenuated strains of Mycobacterium tuberculosis ATCC 25177 (MIC99 28⁻61 µg/mL) and Mycobacterium bovis ATCC 35737 (MIC99 50⁻60 µg/mL), as well as two virulent strains of M. tuberculosis; a laboratory strain H37Rv (MIC99 20⁻50 µg/mL) and a clinical strain with multiple drug resistance MS-115 (MIC99 20⁻50 µg/mL). Transmission electron microscopy (TEM) evaluation of M. tuberculosis H37Rv bacterial cells treated with one of the compounds demonstrated destruction of the bacterial cell wall, suggesting that the mechanism of action for these compounds may be related to their interactions with bacteria cell walls.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/ultraestrutura , Relação Estrutura-Atividade , Uracila/análogos & derivados , Uracila/química , Uracila/farmacologia
9.
Beilstein J Org Chem ; 14: 772-785, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719574

RESUMO

C-nucleosides have intrigued biologists and medicinal chemists since their discovery in 1950's. In that regard, C-nucleosides and their synthetic analogues have resulted in promising leads in drug design. Concurrently, advances in chemical syntheses have contributed to structural diversity and drug discovery efforts. Convergent and modular approaches to synthesis have garnered much attention in this regard. Among them nucleophilic substitution at C1' has seen wide applications providing flexibility in synthesis, good yields, the ability to maneuver stereochemistry as well as to incorporate structural modifications. In this review, we describe recent reports on the modular synthesis of C-nucleosides with a focus on D-ribonolactone and sugar modifications that have resulted in potent lead molecules.

10.
Bioorg Med Chem Lett ; 27(12): 2800-2802, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28465098

RESUMO

Fleximers, a novel type of flexible nucleoside that have garnered attention due to their unprecedented activity against human coronaviruses, have now exhibited highly promising levels of activity against filoviruses. The Flex-nucleoside was the most potent against recombinant Ebola virus in Huh7 cells with an EC50=2µM, while the McGuigan prodrug was most active against Sudan virus-infected HeLa cells with an EC50 of 7µM.


Assuntos
Antivirais/farmacologia , Ebolavirus/efeitos dos fármacos , Nucleosídeos/farmacologia , Antivirais/síntese química , Antivirais/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Nucleosídeos/síntese química , Nucleosídeos/química , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 27(14): 3081-3086, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28571825

RESUMO

Carbocyclic nucleoside analogues have a distinguished history as anti-infectious agents, including key antiviral agents. Toxicity was initially a concern but this was reduced by the introduction of 5'-nor variants. Here, we report the result of our preliminary screening of a series of 5'-norcarbocyclic uridine analogues against protozoan parasites, specifically the major pathogens Leishmania mexicana and Trypanosoma brucei. The series displayed antiparasite activity in the low to mid-micromolar range and establishes a preliminary structure-activity relationship, with the 4',N3-di-(3,5-dimethylbenzoyl)-substituted analogues showing the most prominent activity. Utilizing an array of specially adapted cell lines, it was established that this series of analogues likely act through a common target. Moreover, the strong correlation between the trypanocidal and anti-leishmanial activities indicates that this mechanism is likely shared between the two species. EC50 values were unaffected by the disabling of pyrimidine biosynthesis in T. brucei, showing that these uridine analogues do not act directly on the enzymes of pyrimidine nucleotide metabolism. The lack of cross-resistance with 5-fluorouracil, also establishes that the carbocyclic analogues are not imported through the known uracil transporters, thus offering forth new insights for this class of nucleosides. The lack of cross-resistance with current trypanocides makes this compound class interesting for further exploration.


Assuntos
Antiprotozoários/química , Nucleosídeos de Pirimidina/química , Antiprotozoários/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Fluoruracila/farmacologia , Leishmania mexicana/efeitos dos fármacos , Nucleosídeos de Pirimidina/farmacologia , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos
12.
Bioorg Med Chem ; 24(11): 2476-85, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27112451

RESUMO

A series of 1,6-bis[(benzyloxy)methyl]uracil derivatives combining structural features of both diphenyl ether and pyridone types of NNRTIs were synthesized. Target compounds were found to inhibit HIV-1 reverse transcriptase at micro- and submicromolar levels of concentrations and exhibited anti-HIV-1 activity in MT-4 cell culture, demonstrating resistance profile similar to first generation NNRTIs. The synthesized compounds also showed profound activity against influenza virus (H1N1) in MDCK cell culture without detectable cytotoxicity. The lead compound of this assay appeared to exceed rimantadine, amantadine, ribavirin and oseltamivir carboxylate in activity. The mechanism of action of 1,6-bis[(benzyloxy)methyl]uracils against influenza virus is currently under investigation.


Assuntos
Antivirais/farmacologia , HIV-1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Uracila/análogos & derivados , Uracila/farmacologia , Animais , Antivirais/síntese química , Antivirais/química , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/virologia , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Uracila/síntese química , Uracila/química
13.
Chemistry ; 21(38): 13401-19, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26230190

RESUMO

A wide range of natural purine analogues was used as probe to assess the mechanism of recognition by the wild-type (WT) E. coli purine nucleoside phosphorylase (PNP) versus its Ser90Ala mutant. The results were analyzed from viewpoint of the role of the Ser90 residue and the structural features of the bases. It was found that the Ser90 residue of the PNP 1) plays an important role in the binding and activation of 8-aza-7-deazapurines in the synthesis of their nucleosides, 2) participates in the binding of α-D-pentofuranose-1-phosphates at the catalytic site of the PNP, and 3) catalyzes the dephosphorylation of intermediary formed 2-deoxy-α-D-ribofuranose-1-phosphate in the trans-2-deoxyribosylation reaction. 5-Aza-7-deazaguanine manifested excellent substrate activity for both enzymes, 8-amino-7-thiaguanine and 2-aminobenzothiazole showed no substrate activity for both enzymes. On the contrary, the 2-amino derivatives of benzimidazole and benzoxazole are substrates and are converted into the N1- and unusual N2-glycosides, respectively. 9-Deaza-5-iodoxanthine showed moderate inhibitory activity of the WT E. coli PNP, whereas 9-deazaxanthine and its 2'-deoxyriboside are weak inhibitors.


Assuntos
Alanina/química , Escherichia coli/química , Nucleosídeos/síntese química , Purina-Núcleosídeo Fosforilase/síntese química , Alanina/análogos & derivados , Sequência de Bases , Sítios de Ligação , Catálise , Cristalografia por Raios X , Escherichia coli/metabolismo , Cinética , Nucleosídeos/química , Nucleosídeos/metabolismo , Purina-Núcleosídeo Fosforilase/química , Relação Estrutura-Atividade
14.
Bioorg Med Chem Lett ; 25(19): 4274-6, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26316465

RESUMO

The chemotherapeutic drug Gemcitabine, 2',2'-difluoro-2'-deoxycytidine, has long been the standard of care for a number of cancers. Gemcitabine's chemotherapeutic properties stem from its 2',2'-difluoro-2'-deoxyribose sugar, which mimics the natural nucleoside, but also disrupts nucleic acid synthesis, leading to cell death. As a result, numerous analogues have been prepared to further explore the biological implications for this structural modification. In that regard, a thieno-expanded guanosine analogue was of interest due to biological activity previously observed for the tricyclic heterobase scaffold. Several analogues were prepared, including the McGuigan ProTide, however the parent nucleoside exhibited the best chemotherapeutic activity, specifically against breast cancer cell lines (89.53% growth inhibition).


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Guanosina/análogos & derivados , Guanosina/farmacologia , Tiofenos/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/química , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Guanosina/química , Humanos , Conformação Molecular , Relação Estrutura-Atividade , Tiofenos/química , Gencitabina
15.
Bioorg Med Chem Lett ; 25(8): 1715-1717, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25791452

RESUMO

Halogenated thieno[3,2-d]pyrimidines exhibit antiproliferative activity against a variety of cancer cell models, such as the mouse lymphocytic leukemia cell line L1210 in which they induce apoptosis independent of cell cycle arrest. Here we assessed these activities on MDA-MB-231 cells, a well-established model of aggressive, metastatic breast cancer. While 2,4-dichloro[3,2-d]pyrimidine was less toxic to MDA-MB-231 cells than previously observed in the L1210 model, flow cytometry analysis showed that MDA-MB-231 cell death involved arrest at the G2/M stage of the cell cycle. Conversely, the introduction of bromine at C7 of the 2,4-dichloro[3,2-d]pyrimidine eliminated cell type-dependent differences in cytotoxicity or cell cycle status. Together, these data indicate that a substituent at C7 can profoundly modify the cytotoxic mechanism of halogenated thieno[3,2-d]pyrimidines in a cell type-specific manner.


Assuntos
Antineoplásicos/química , Brometos/química , Pirimidinas/química , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Pirimidinas/síntese química , Pirimidinas/toxicidade
16.
Bioorg Med Chem Lett ; 25(15): 2923-6, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26048809

RESUMO

A series of doubly flexible nucleoside analogues were designed based on the acyclic sugar scaffold of acyclovir and the flex-base moiety found in the fleximers. The target compounds were evaluated for their antiviral potential and found to inhibit several coronaviruses. Significantly, compound 2 displayed selective antiviral activity (CC50 >3× EC50) towards human coronavirus (HCoV)-NL63 and Middle East respiratory syndrome-coronavirus, but not severe acute respiratory syndrome-coronavirus. In the case of HCoV-NL63 the activity was highly promising with an EC50 <10 µM and a CC50 >100 µM. As such, these doubly flexible nucleoside analogues are viewed as a novel new class of drug candidates with potential for potent inhibition of coronaviruses.


Assuntos
Aciclovir/análogos & derivados , Aciclovir/farmacologia , Antivirais/química , Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Coronavirus/efeitos dos fármacos , Animais , Chlorocebus aethiops , Coronavirus/fisiologia , Coronavirus Humano NL63/efeitos dos fármacos , Coronavirus Humano NL63/fisiologia , Desenho de Fármacos , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Nucleosídeos/química , Nucleosídeos/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Células Vero , Replicação Viral/efeitos dos fármacos
17.
Bioorg Med Chem ; 23(15): 4354-4363, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26122770

RESUMO

In vitro evaluation of the halogenated pyrrolo[3,2-d]pyrimidines identified antiproliferative activities in compounds 1 and 2 against four different cancer cell lines. Upon screening of a series of pyrrolo[3,2-d]pyrimidines, the 2,4-Cl compound 1 was found to exhibit antiproliferative activity at low micromolar concentrations. Introduction of iodine at C7 resulted in significant enhancement of potency by reducing the IC50 into sub-micromolar levels, thereby suggesting the importance of a halogen at C7. This finding was further supported by an increased antiproliferative effect for 4 as compared to 3. Cell-cycle and apoptosis studies conducted on the two potent compounds 1 and 2 showed differences in their cytotoxic mechanisms in triple negative breast cancer MDA-MB-231 cells, wherein compound 1 induced cells to accumulate at the G2/M stage with little evidence of apoptotic death. In contrast, compound 2 robustly induced apoptosis with concomitant G2/M cell cycle arrest in this cell model.


Assuntos
Antineoplásicos/química , Pirimidinas/química , Pirróis/química , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Halogenação , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Pirimidinas/síntese química , Pirimidinas/toxicidade , Pirróis/síntese química , Pirróis/toxicidade , Relação Estrutura-Atividade
18.
Bioorg Med Chem ; 23(21): 7035-44, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26443550

RESUMO

The need for novel therapeutic options to fight herpesvirus infections still persists. Herein we report the design, synthesis and antiviral evaluation of a new family of non-nucleoside antivirals, derived from 1-[ω-(4-bromophenoxy)alkyl]uracil derivatives--previously reported inhibitors of human cytomegalovirus (HCMV). Introduction of the N-(4-phenoxyphenyl)acetamide side chain at N(3) increased their potency and widened activity spectrum. The most active compounds in the series exhibit submicromolar activity against different viral strains of HCMV and varicella zoster virus (VZV) replication in HEL cell cultures. Inactivity against other DNA and RNA viruses, including herpes simplex virus 1/2, points to a novel mechanism of antiviral action.


Assuntos
Acetamidas/química , Antivirais/química , Citomegalovirus/fisiologia , Herpesvirus Humano 3/fisiologia , Uracila/química , Acetamidas/síntese química , Acetamidas/toxicidade , Antivirais/síntese química , Antivirais/toxicidade , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Vírus de DNA/efeitos dos fármacos , Vírus de DNA/fisiologia , Avaliação Pré-Clínica de Medicamentos , Herpesvirus Humano 3/efeitos dos fármacos , Humanos , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/fisiologia , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
19.
Bioorg Med Chem ; 23(5): 1069-81, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25638501

RESUMO

In order to identify novel nonnucleoside inhibitors of HIV-1 reverse transcriptase two series of amide-containing uracil derivatives were designed as hybrids of two scaffolds of previously reported inhibitors. Subsequent biological evaluation confirmed acetamide uracil derivatives 15a-k as selective micromolar NNRTIs with a first generation-like resistance profile. Molecular modeling of the most active compounds 15c and 15i was employed to provide insight on their inhibitory properties and direct future design efforts.


Assuntos
Acetanilidas/química , Fármacos Anti-HIV/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Uracila/análogos & derivados , Fármacos Anti-HIV/química , Linhagem Celular , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Inibidores da Transcriptase Reversa/química
20.
Bioorg Med Chem ; 22(7): 2113-22, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24631358

RESUMO

The in vitro evaluation of thieno[3,2-d]pyrimidines identified halogenated compounds 1 and 2 with antiproliferative activity against three different cancer cell lines. A structure activity relationship study indicated the necessity of the chlorine at the C4-position for biological activity. The two most active compounds 1 and 2 were found to induce apoptosis in the leukemia L1210 cell line. Additionally, the compounds were screened against a variety of other microbial targets and as a result, selective activity against several fungi was also observed. The synthesis and preliminary biological results are reported herein.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Fungos/efeitos dos fármacos , Pirimidinas/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA