Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 115(1): 92-102, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28843001

RESUMO

The use of cell-free systems to produce recombinant proteins has grown rapidly over the past decade. In particular, cell-free protein synthesis (CFPS) systems based on mammalian cells provide alternative methods for the production of many proteins, including those that contain disulfide bonds, glycosylation, and complex structures such as monoclonal antibodies. In the present study, we show robust production of turbo green fluorescent protein (tGFP) and streptokinase in a cell-free system using instrumented mini-bioreactors for highly reproducible protein production. We achieved recombinant protein production (∼600 µg/ml of tGFP and 500 µg/ml streptokinase) in 2.5 hr of expression time, comparable to previously reported yields for cell-free protein expression. Also, we demonstrate the use of two different affinity tags for product capture and compare those to a tag-free self-cleaving intein capture technology. The intein purification method provided a product recovery of 86%, compared with 52% for conventionally tagged proteins, while resulting in a 30% increase in total units of activity of purified recombinant streptokinase compared with conventionally tagged proteins. These promising beneficial features combined with the intein technology makes feasible the development of dose-level production of therapeutic proteins at the point-of-care.


Assuntos
Sistema Livre de Células , Misturas Complexas , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Estreptoquinase/biossíntese , Estreptoquinase/isolamento & purificação , Animais , Células CHO , Cricetulus , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/isolamento & purificação , Proteínas Recombinantes/genética , Estreptoquinase/genética
2.
Biotechnol Bioeng ; 114(7): 1478-1486, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266026

RESUMO

Cell-free protein synthesis (CFPS) is an ideal platform for rapid and convenient protein production. However, bioreactor design remains a critical consideration in optimizing protein expression. Using turbo green fluorescent protein (tGFP) as a model, we tracked small molecule components in a Chinese Hamster Ovary (CHO) CFPS system to optimize protein production. Here, three bioreactors in continuous-exchange cell-free (CECF) format were characterized. A GFP optical sensor was built to monitor the product in real-time. Mass transfer of important substrate and by-product components such as nucleoside triphosphates (NTPs), creatine, and inorganic phosphate (Pi) across a 10-kDa MWCO cellulose membrane was calculated. The highest efficiency measured by tGFP yields were found in a microdialysis device configuration; while a negative effect on yield was observed due to limited mass transfer of NTPs in a dialysis cup configuration. In 24-well plate high-throughput CECF format, addition of up to 40 mM creatine phosphate in the system increased yields by up to ∼60% relative to controls. Direct ATP addition, as opposed to creatine phosphate addition, negatively affected the expression. Pi addition of up to 30 mM to the expression significantly reduced yields by over ∼40% relative to controls. Overall, data presented in this report serves as a valuable reference to optimize the CHO CFPS system for next-generation bioprocessing. Biotechnol. Bioeng. 2017;114: 1478-1486. © 2017 Wiley Periodicals, Inc.


Assuntos
Células CHO/metabolismo , Sistema Livre de Células/metabolismo , Biossíntese de Proteínas/fisiologia , Engenharia de Proteínas/instrumentação , Engenharia de Proteínas/métodos , Animais , Células CHO/química , Cricetulus , Controle de Qualidade
3.
J Lab Autom ; 19(3): 332-7, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24713428

RESUMO

Every year, an unacceptably large number of infant deaths occur in developing nations, with premature birth and asphyxia being two of the leading causes. A well-regulated thermal environment is critical for neonatal survival. Advanced incubators currently exist, but they are far too expensive to meet the needs of developing nations. We are developing a thermodynamically advanced low-cost incubator suitable for operation in a low-resource environment. Our design features three innovations: (1) a disposable baby chamber to reduce infant mortality due to nosocomial infections, (2) a passive cooling mechanism using low-cost heat pipes and evaporative cooling from locally found clay pots, and (3) insulated panels and a thermal bank consisting of water that effectively preserve and store heat. We developed a prototype incubator and visited and presented our design to our partnership hospital site in Mysore, India. After obtaining feedback, we have determined realistic, nontrivial design requirements and constraints in order to develop a new prototype incubator for clinical trials in hospitals in India.


Assuntos
Equipamentos Descartáveis , Desenho de Equipamento , Incubadoras para Lactentes , Conservação de Recursos Energéticos/economia , Custos e Análise de Custo , Infecção Hospitalar/economia , Infecção Hospitalar/prevenção & controle , Países em Desenvolvimento , Equipamentos Descartáveis/economia , Pesquisas sobre Atenção à Saúde , Custos Hospitalares , Hospitais Urbanos , Humanos , Incubadoras para Lactentes/economia , Índia , Recém-Nascido , Avaliação das Necessidades , Organizações , Pais , Atenção Primária à Saúde/economia , Estudo de Prova de Conceito , Atenção Secundária à Saúde/economia , Recursos Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA