Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Primates ; 50(2): 190-3, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19145405

RESUMO

This study documents the cortisol levels in the saliva of a bonobo group, especially that of a bonobo female which had given birth for the first time. During a long study in Zoological Garden Frankfurt, Germany, a bonobo baby was born on 3 August 2007. Due to the fission-fusion keeping system employed, the bonobos were divided into two groups on this day. Their behavior was observed regularly and saliva was also collected. The bonobos had been trained to chew cotton wool and to give back the samples. The cortisol response was tested twice a day before birth and three times on the day of parturition. Before birth, no observable indication behavior was seen, but an increase in the cortisol concentration of the expectant mother was found. Parturition occurred at 8 pm. The next morning, the group with the newborn was visibly more active, which correlated with the fact that their cortisol levels were increased in the morning in comparison to the second group. During the day, cortisol decreased in both groups, only it was higher throughout the day in the new mother. In the evening, the two groups showed nearly the same cortisol levels. These data indicate that there is indeed a relation between observable behavior and the cortisol level in bonobo saliva. Therefore, the cortisol level can be regarded as a suitable indicator for verifying behavioral events.


Assuntos
Animais de Zoológico , Hidrocortisona/análise , Pan paniscus/metabolismo , Parto/metabolismo , Saliva/química , Animais , Feminino , Gravidez
2.
PLoS One ; 9(9): e108664, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25250566

RESUMO

The management of captive animals has been improved by the establishment of positive reinforcement training as a tool to facilitate interactions between caretakers and animals. In great apes, positive reinforcement training has also been used to train individuals to participate in simple medical procedures to monitor physical health. One aim of positive reinforcement training is to establish a relaxed atmosphere for situations that, without training, might be very stressful. This is especially true for simple medical procedures that can require animals to engage in behaviours that are unusual or use unfamiliar medical devices that can be upsetting. Therefore, one cannot exclude the possibility that the training itself is a source of stress. In this study, we explored the effects of medical positive reinforcement training on salivary cortisol in two groups of captive ape species, orangutans and bonobos, which were familiar to this procedure. Furthermore, we successfully biologically validated the salivary cortisol assay, which had already been validated for bonobos, for orangutans. For the biological validation, we found that cortisol levels in orangutan saliva collected during baseline conditions were lower than in samples collected during three periods that were potentially stressful for the animals. However, we did not find significant changes in salivary cortisol during medical positive reinforcement training for either bonobos or orangutans. Therefore, for bonobos and orangutans with previous exposure to medical PRT, the procedure is not stressful. Thus, medical PRT provides a helpful tool for the captive management of the two species.


Assuntos
Condicionamento Clássico , Hidrocortisona/metabolismo , Saliva/metabolismo , Animais , Feminino , Masculino , Pan paniscus , Pongo
3.
PLoS One ; 8(4): e60773, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23613746

RESUMO

Salivary alpha amylase (sAA) is the most abundant enzyme in saliva. Studies in humans found variation in enzymatic activity of sAA across populations that could be linked to the copy number of loci for salivary amylase (AMY1), which was seen as an adaptive response to the intake of dietary starch. In addition to diet dependent variation, differences in sAA activity have been related to social stress. In a previous study, we found evidence for stress-induced variation in sAA activity in the bonobos, a hominoid primate that is closely related to humans. In this study, we explored patterns of variation in sAA activity in bonobos and three other hominoid primates, chimpanzee, gorilla, and orangutan to (a) examine if within-species differences in sAA activity found in bonobos are characteristic for hominoids and (b) assess the extent of variation in sAA activity between different species. The results revealed species-differences in sAA activity with gorillas and orangutans having higher basal sAA activity when compared to Pan. To assess the impact of stress, sAA values were related to cortisol levels measured in the same saliva samples. Gorillas and orangutans had low salivary cortisol concentrations and the highest cortisol concentration was found in samples from male bonobos, the group that also showed the highest sAA activity. Considering published information, the differences in sAA activity correspond with differences in AMY1 copy numbers and match with general features of natural diet. Studies on sAA activity have the potential to complement molecular studies and may contribute to research on feeding ecology and nutrition.


Assuntos
Hidrocortisona/metabolismo , Primatas/metabolismo , Saliva/enzimologia , alfa-Amilases Salivares/metabolismo , Envelhecimento/metabolismo , Animais , Feminino , Modelos Lineares , Masculino , Especificidade da Espécie
4.
Physiol Behav ; 105(2): 476-82, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21945369

RESUMO

Salivary alpha-Amylase (sAA) is a starch digesting enzyme. In addition to its function in the context of nutrition, sAA has also turned out to be useful for monitoring sympathetic nervous system activity. Recent studies on humans have found a relationship between intra-individual changes in sAA activity and physical and psychological stress. In studies on primates and other vertebrates, non-invasive monitoring of short-term stress responses is usually based on measurements of cortisol levels, which are indicative of hypothalamic-pituitary-adrenal activity. The few studies that have used both cortisol levels and sAA activity indicate that these two markers may respond differently and independently to different types of stress such that variation in the degree of the activation of different stress response systems might reflect alternative coping mechanisms or individual traits. Here, we present the first data on intra- and inter-individual variation of sAA activity in captive bonobos and compare the results with information from other ape species and humans. Our results indicate that sAA activity in the bonobo samples was significantly lower than in the human samples but within the range of other great ape species. In addition, sAA activity was significantly higher in samples collected at times when subjects had been exposed to stressors (judged by changes in behavioral patterns and cortisol levels) than in samples collected at other times. Our results indicate that bonobos possess functioning sAA and, as in other species, sAA activity is influenced by autonomic nervous system activity. Monitoring sAA activity could therefore be a useful tool for evaluating stress in bonobos.


Assuntos
Saliva/enzimologia , alfa-Amilases Salivares/metabolismo , Estresse Psicológico/metabolismo , Adulto , Fatores Etários , Análise de Variância , Animais , Ritmo Circadiano , Modelos Animais de Doenças , Feminino , Humanos , Hidrocortisona/metabolismo , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Pan paniscus , Fatores Sexuais , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA