Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Public Health ; 23(1): 607, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997957

RESUMO

BACKGROUND: Gonorrhoea is an ongoing public health concern due to its rising incidence and the emergence of antibiotic resistance. There are an estimated 82 million new Neisseria gonorrhoeae infections each year, with several populations at higher risk for gonococcal infection, including gay and bisexual men (GBM). If left untreated, infection can lead to serious morbidity including infertility, sepsis and increased risk of HIV acquisition. Development of a gonorrhoea vaccine has been challenging, however there is observational evidence that serogroup B meningococcal vaccines, used to protect against the closely related bacteria Neisseria meningitidis, could provide cross-protection against N. gonorrhoeae. METHODS: The MenGO (Meningococcal vaccine efficacy against Gonorrhoea) study is a phase III open-label randomised control trial in GBM to evaluate the efficacy of the four-component meningococcal serogroup B vaccine, 4CMenB, against gonorrhoea. A total of 130 GBM will be recruited at the Gold Coast Sexual Health Clinic, Australia, and randomised to either receive 2 doses of 4CMenB or no intervention. Participants will be followed up for 24 months with testing for N. gonorrhoeae and other sexually transmissible infections every three months. Demographics, sexual behaviour risk, antibiotic use, and blood samples for analysis of N. gonorrhoeae-specific immune responses, will be collected during the study. The primary outcome is the number of N. gonorrhoeae infections in participants over 2 years measured by nucleic acid amplification test (NAAT). Secondary outcomes are vaccine-induced N. gonorrhoeae-specific immune responses, and adverse events in trial participants. DISCUSSION: This trial will determine if the 4CMenB vaccine is able to reduce N. gonorrhoeae infection. If shown to be effective, 4CMenB could be used in gonococcal prevention. Analysis of 4CMenB-induced immune responses will increase understanding of the type of immune response needed to prevent N. gonorrhoeae, which may enable identification of a potential correlate of protection to aid future gonorrhoea vaccine development. TRIAL REGISTRATION: The trial has been registered on the Australian and New Zealand Clinical Trials Registry (ACTRN12619001478101) on 25 October 2019.


Assuntos
Gonorreia , Infecções Meningocócicas , Vacinas Meningocócicas , Minorias Sexuais e de Gênero , Humanos , Masculino , Austrália/epidemiologia , Ensaios Clínicos Fase III como Assunto , Gonorreia/prevenção & controle , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/uso terapêutico , Neisseria gonorrhoeae , Neisseria meningitidis Sorogrupo B , Ensaios Clínicos Controlados Aleatórios como Assunto , Sorogrupo , Comportamento Sexual
2.
Antimicrob Agents Chemother ; 66(1): e0154221, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633841

RESUMO

Neisseria gonorrhoeae is an increasing public health threat due to its rapidly rising incidence and antibiotic resistance. There are an estimated 106 million cases per year worldwide, there is no vaccine available to prevent infection, and N. gonorrhoeae strains that are resistant to all antibiotics routinely used to treat the infection have emerged. In many strains, antibiotic resistance is mediated by overexpression of the MtrCDE efflux pump, which enables the bacteria to transport toxic antibiotics out of the cell. Genetic mutations that inactivate MtrCDE have previously been shown to render resistant strains susceptible to certain antibiotics. Here, we show that peptides rationally designed to target and disrupt the activity of each of the three protein components of MtrCDE were able to increase the susceptibility of N. gonorrhoeae strains to antibiotics in a dose-dependent manner and with no toxicity to human cells. Cotreatment of bacteria with subinhibitory concentrations of the peptide led to 2- to 64-fold increases in susceptibility to erythromycin, azithromycin, ciprofloxacin, and/or ceftriaxone in N. gonorrhoeae strains FA1090, WHO K, WHO P, and WHO X. The cotreatment experiments with peptides P-MtrC1 and P-MtrE1 resulted in increased susceptibilities of WHO P and WHO X to azithromycin, ciprofloxacin, and ceftriaxone that were of the same magnitude seen in MtrCDE mutants. P-MtrE1 was able to change the azithromycin resistance profile of WHO P from resistant to susceptible. Data presented here demonstrate that these peptides may be developed for use as a dual treatment with existing antibiotics to treat multidrug-resistant gonococcal infections.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Azitromicina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética , Gonorreia/tratamento farmacológico , Gonorreia/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas Repressoras/genética
3.
J Infect Dis ; 221(10): 1612-1622, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-31781772

RESUMO

The sexually transmitted infection gonorrhoea is on the rise worldwide and an increased understanding of the mechanisms of colonization and pathogenesis of Neisseria gonorrhoeae is required to aid development of new treatment and prevention strategies. In the current study, we investigate the neisserial heparin-binding antigen (NHBA) of N. gonorrhoeae and confirm its role in binding to several glycans, including heparin, and identify interactions of NHBA with both gonococcal and host cells. Furthermore, we report that a gonococcal nhba mutant displays decreased cell aggregation and microcolony formation, as well as reduced survival in human serum and reduced adherence to human cervical and urethral epithelial cells, relative to the wild-type strain. These data indicate that the gonococcal NHBA contributes to several aspects of the colonization and survival of N. gonorrhoeae and may be a target for new antimicrobial or vaccines.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Transporte/metabolismo , Neisseria gonorrhoeae/metabolismo , Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Transporte/genética , Colo do Útero/citologia , Farmacorresistência Bacteriana , Células Epiteliais/fisiologia , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Polissacarídeos , Ligação Proteica , Uretra/citologia
4.
FASEB J ; 33(11): 12324-12335, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31442078

RESUMO

GNA2091 is one of the components of the 4-component meningococcal serogroup B vaccine (4CMenB) vaccine and is highly conserved in all meningococcal strains. However, its functional role has not been fully characterized. Here we show that nmb2091 is part of an operon and is cotranscribed with the nmb2089, nmb2090, and nmb2092 adjacent genes, and a similar but reduced operon arrangement is conserved in many other gram-negative bacteria. Deletion of the nmb2091 gene causes an aggregative phenotype with a mild defect in cell separation; differences in the outer membrane composition and phospholipid profile, in particular in the phosphoethanolamine levels; an increased level of outer membrane vesicles; and deregulation of the zinc-responsive genes such as znuD. Finally, the ∆2091 strain is attenuated with respect to the wild-type strain in competitive index experiments in the infant rat model of meningococcal infection. Altogether these data suggest that GNA2091 plays important roles in outer membrane architecture, biogenesis, homeostasis, and in meningococcal survival in vivo, and a model for its role is discussed. These findings highlight the importance of GNA2091 as a vaccine component.-Seib, K. L., Haag, A. F., Oriente, F., Fantappiè, L., Borghi, S., Semchenko, E. A., Schulz, B. L., Ferlicca, F., Taddei, A. R., Giuliani, M. M., Pizza, M., Delany, I. The meningococcal vaccine antigen GNA2091 is an analogue of YraP and plays key roles in outer membrane stability and virulence.


Assuntos
Antígenos de Bactérias/fisiologia , Membrana Externa Bacteriana/química , Vacinas Meningocócicas , Animais , Antígenos de Bactérias/genética , Membrana Externa Bacteriana/fisiologia , Infecções Meningocócicas/mortalidade , Vacinas Meningocócicas/genética , Neisseria meningitidis Sorogrupo B/genética , Neisseria meningitidis Sorogrupo B/patogenicidade , Óperon , Proteínas Periplásmicas/fisiologia , Ratos , Ratos Wistar , Regulon , Virulência , Zinco/farmacologia
5.
FASEB J ; 33(2): 2095-2104, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30260702

RESUMO

Bacterial infection is one of the leading causes of death in young, elderly, and immune-compromised patients. The rapid spread of multi-drug-resistant (MDR) bacteria is a global health emergency and there is a lack of new drugs to control MDR pathogens. We describe a heretofore-unexplored discovery pathway for novel antibiotics that is based on self-targeting, structure-disrupting peptides. We show that a helical peptide, KFF- EcH3, derived from the Escherichia coli methionine aminopeptidase can disrupt secondary and tertiary structure of this essential enzyme, thereby killing the bacterium (including MDR strains). Significantly, no detectable resistance developed against this peptide. Based on a computational analysis, our study predicted that peptide KFF- EcH3 has the strongest interaction with the structural core of the methionine aminopeptidase. We further used our approach to identify peptide KFF- NgH1 to target the same enzyme from Neisseria gonorrhoeae. This peptide inhibited bacterial growth and was able to treat a gonococcal infection in a human cervical epithelial cell model. These findings present an exciting new paradigm in antibiotic discovery using self-derived peptides that can be developed to target the structures of any essential bacterial proteins.-Zhan, J., Jia, H., Semchenko, E. A., Bian, Y., Zhou, A. M., Li, Z., Yang, Y., Wang, J., Sarkar, S., Totsika, M., Blanchard, H., Jen, F. E.-C., Ye, Q., Haselhorst, T., Jennings, M. P., Seib, K. L., Zhou, Y. Self-derived structure-disrupting peptides targeting methionine aminopeptidase in pathogenic bacteria: a new strategy to generate antimicrobial peptides.


Assuntos
Aminopeptidases/antagonistas & inibidores , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proliferação de Células/efeitos dos fármacos , Gonorreia/tratamento farmacológico , Metionina/metabolismo , Neisseria gonorrhoeae/efeitos dos fármacos , Células Cultivadas , Colo do Útero/efeitos dos fármacos , Colo do Útero/metabolismo , Colo do Útero/microbiologia , Farmacorresistência Bacteriana Múltipla , Feminino , Gonorreia/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Neisseria gonorrhoeae/enzimologia
6.
Clin Infect Dis ; 69(7): 1101-1111, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30551148

RESUMO

BACKGROUND: Neisseria gonorrhoeae and Neisseria meningitidis are closely-related bacteria that cause a significant global burden of disease. Control of gonorrhoea is becoming increasingly difficult, due to widespread antibiotic resistance. While vaccines are routinely used for N. meningitidis, no vaccine is available for N. gonorrhoeae. Recently, the outer membrane vesicle (OMV) meningococcal B vaccine, MeNZB, was reported to be associated with reduced rates of gonorrhoea following a mass vaccination campaign in New Zealand. To probe the basis for this protection, we assessed the cross-reactivity to N. gonorrhoeae of serum raised to the meningococcal vaccine Bexsero, which contains the MeNZB OMV component plus 3 recombinant antigens (Neisseria adhesin A, factor H binding protein [fHbp]-GNA2091, and Neisserial heparin binding antigen [NHBA]-GNA1030). METHODS: A bioinformatic analysis was performed to assess the similarity of MeNZB OMV and Bexsero antigens to gonococcal proteins. Rabbits were immunized with the OMV component or the 3 recombinant antigens of Bexsero, and Western blots and enzyme-linked immunosorbent assays were used to assess the generation of antibodies recognizing N. gonorrhoeae. Serum from humans immunized with Bexsero was investigated to assess the nature of the anti-gonococcal response. RESULTS: There is a high level of sequence identity between MeNZB OMV and Bexsero OMV antigens, and between the antigens and gonococcal proteins. NHBA is the only Bexsero recombinant antigen that is conserved and surfaced exposed in N. gonorrhoeae. Bexsero induces antibodies in humans that recognize gonococcal proteins. CONCLUSIONS: The anti-gonococcal antibodies induced by MeNZB-like OMV proteins could explain the previously-seen decrease in gonorrhoea following MeNZB vaccination. The high level of human anti-gonococcal NHBA antibodies generated by Bexsero vaccination may provide additional cross-protection against gonorrhoea.


Assuntos
Reações Cruzadas/imunologia , Gonorreia/imunologia , Meningite Meningocócica/imunologia , Vacinas Meningocócicas/imunologia , Neisseria gonorrhoeae/imunologia , Sorogrupo , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Sequência Conservada , Gonorreia/microbiologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Meningite Meningocócica/classificação , Meningite Meningocócica/genética , Neisseria gonorrhoeae/genética , Filogenia , Coelhos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinação
7.
Proc Natl Acad Sci U S A ; 112(52): E7266-75, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26676578

RESUMO

Cells from all domains of life express glycan structures attached to lipids and proteins on their surface, called glycoconjugates. Cell-to-cell contact mediated by glycan:glycan interactions have been considered to be low-affinity interactions that precede high-affinity protein-glycan or protein-protein interactions. In several pathogenic bacteria, truncation of surface glycans, lipooligosaccharide (LOS), or lipopolysaccharide (LPS) have been reported to significantly reduce bacterial adherence to host cells. Here, we show that the saccharide component of LOS/LPS have direct, high-affinity interactions with host glycans. Glycan microarrays reveal that LOS/LPS of four distinct bacterial pathogens bind to numerous host glycan structures. Surface plasmon resonance was used to determine the affinity of these interactions and revealed 66 high-affinity host-glycan:bacterial-glycan pairs with equilibrium dissociation constants (K(D)) ranging between 100 nM and 50 µM. These glycan:glycan affinity values are similar to those reported for lectins or antibodies with glycans. Cell assays demonstrated that glycan:glycan interaction-mediated bacterial adherence could be competitively inhibited by either host cell or bacterial glycans. This is the first report to our knowledge of high affinity glycan:glycan interactions between bacterial pathogens and the host. The discovery of large numbers of glycan:glycan interactions between a diverse range of structures suggests that these interactions may be important in all biological systems.


Assuntos
Aderência Bacteriana , Glicoconjugados/metabolismo , Lipopolissacarídeos/metabolismo , Polissacarídeos/metabolismo , Células CACO-2 , Calorimetria/métodos , Campylobacter jejuni/metabolismo , Campylobacter jejuni/fisiologia , Haemophilus influenzae/metabolismo , Haemophilus influenzae/fisiologia , Interações Hospedeiro-Patógeno , Humanos , Íleo/metabolismo , Íleo/microbiologia , Salmonella typhimurium/metabolismo , Salmonella typhimurium/fisiologia , Shigella flexneri/metabolismo , Shigella flexneri/fisiologia , Ressonância de Plasmônio de Superfície , Termodinâmica
8.
Infect Immun ; 85(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27895130

RESUMO

Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection (STI) gonorrhea, is a growing public health threat for which a vaccine is urgently needed. We characterized the functional role of the gonococcal MetQ protein, which is the methionine binding component of an ABC transporter system, and assessed its potential as a candidate antigen for inclusion in a gonococcal vaccine. MetQ has been found to be highly conserved in all strains investigated to date, it is localized on the bacterial surface, and it binds l-methionine with a high affinity. MetQ is also involved in gonococcal adherence to cervical epithelial cells. Mutants lacking MetQ have impaired survival in human monocytes, macrophages, and serum. Furthermore, antibodies raised against MetQ are bactericidal and are able to block gonococcal adherence to epithelial cells. These data suggest that MetQ elicits both bactericidal and functional blocking antibodies and is a valid candidate antigen for additional investigation and possible inclusion in a vaccine for prevention of gonorrhea.


Assuntos
Transportadores de Cassetes de Ligação de ATP/imunologia , Anticorpos Antibacterianos/imunologia , Anticorpos Bloqueadores/imunologia , Antígenos de Bactérias/imunologia , Gonorreia/imunologia , Neisseria gonorrhoeae/imunologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Sequência de Aminoácidos , Antígenos de Bactérias/química , Antígenos de Bactérias/genética , Aderência Bacteriana , Vacinas Bacterianas/imunologia , Técnicas de Inativação de Genes , Ordem dos Genes , Gonorreia/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Metionina , Monócitos/imunologia , Monócitos/metabolismo , Neisseria gonorrhoeae/metabolismo , Fases de Leitura Aberta , Ligação Proteica
9.
PLoS Pathog ; 10(1): e1003822, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24391495

RESUMO

Campylobacter jejuni is the leading cause of human gastroenteritis worldwide with over 500 million cases annually. Chemotaxis and motility have been identified as important virulence factors associated with C. jejuni colonisation. Group A transducer-like proteins (Tlps) are responsible for sensing the external environment for bacterial movement to or away from a chemical gradient or stimulus. In this study, we have demonstrated Cj1564 (Tlp3) to be a multi-ligand binding chemoreceptor and report direct evidence supporting the involvement of Cj1564 (Tlp3) in the chemotaxis signalling pathway via small molecule arrays, surface plasmon and nuclear magnetic resonance (SPR and NMR) as well as chemotaxis assays of wild type and isogenic mutant strains. A modified nutrient depleted chemotaxis assay was further used to determine positive or negative chemotaxis with specific ligands. Here we demonstrate the ability of Cj1564 to interact with the chemoattractants isoleucine, purine, malic acid and fumaric acid and chemorepellents lysine, glucosamine, succinic acid, arginine and thiamine. An isogenic mutant of cj1564 was shown to have altered phenotypic characteristics of C. jejuni, including loss of curvature in bacterial cell shape, reduced chemotactic motility and an increase in both autoagglutination and biofilm formation. We demonstrate Cj1564 to have a role in invasion as in in vitro assays the tlp3 isogenic mutant has a reduced ability to adhere and invade a cultured epithelial cell line; interestingly however, colonisation ability of avian caeca appears to be unaltered. Additionally, protein-protein interaction studies revealed signal transduction initiation through the scaffolding proteins CheV and CheW in the chemotaxis sensory pathway. This is the first report characterising Cj1564 as a multi-ligand receptor for C. jejuni, we therefore, propose to name this receptor CcmL, Campylobacter chemoreceptor for multiple ligands. In conclusion, this study identifies a novel multifunctional role for the C. jejuni CcmL chemoreceptor and illustrates its involvement in the chemotaxis pathway and subsequent survival of this organism in the host.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Campylobacter jejuni/fisiologia , Transdução de Sinais/fisiologia , Animais , Células CACO-2 , Infecções por Campylobacter/genética , Infecções por Campylobacter/metabolismo , Galinhas , Gastroenterite/genética , Gastroenterite/metabolismo , Gastroenterite/microbiologia , Humanos
10.
BMC Microbiol ; 12: 128, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22747654

RESUMO

BACKGROUND: Chemotaxis is crucial for the colonisation/infection of hosts with Campylobacter jejuni. Central to chemotaxis are the group A chemotaxis genes that are responsible for sensing the external environment. The distribution of group A chemoreceptor genes, as found in the C. jejuni sequenced strains, tlp1-4, 7, 10 and 11 were determined in 33 clinical human and avian isolates. RESULTS: Group A tlp gene content varied among the strains with genes encoding tlp1 (aspartate receptor, ccaA) and tlp7 present in all strains tested, where as tlp11 was present in only one of our international collection clinical isolates, C. jejuni 520, but was more prevalent (9/13) in the freshly isolated clinical stains from patients who required hospitalisation due to C. jejuni infection (GCH1-17). Relative expression levels of the group A tlp genes were also determined in C. jejuni reference strains NCTC 11168-GS, 11168-O and 81116 using cells grown in vitro at 37°C, 42°C and maintained at room temperature and with cells isolated directly from murine and avian hosts by immune magnetic separation without subsequent culture. Gene expression of tlp genes was varied based on strain, growth conditions and in vivo isolation source. Tlp1, although the most conserved, showed the lowest and most varied mRNA expression and protein production under laboratory conditions. Tlp7 was highly expressed at most conditions tested, and gene expression was not influenced by the tlp7 gene encoding a full length protein or one expressed as separate periplasmic and cytoplasmic domains. CONCLUSION: We have shown that chemosensory receptor set variation exists among C. jejuni strains, but is not dependent on the isolation source.


Assuntos
Proteínas de Bactérias/biossíntese , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Quimiotaxia , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/biossíntese , Animais , Proteínas de Bactérias/genética , Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Campylobacter jejuni/isolamento & purificação , Campylobacter jejuni/fisiologia , Galinhas , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos
11.
Methods Mol Biol ; 2414: 363-372, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34784046

RESUMO

There is no vaccine available to prevent Neisseria gonorrhoeae infection, however there is currently a high level of interest in developing gonococcal vaccines due to the increasing number of cases and continuing emergence of antimicrobial resistance worldwide. A key aspect of vaccine development is the investigation of the functional immune response raised to the vaccine targets under investigation. Here, we describe two assays used to assess the functional immune response raised against gonococcal vaccine targets: the serum bactericidal assay (SBA) and the opsonophagocytic assay (OPA).


Assuntos
Gonorreia , Anticorpos Antibacterianos , Vacinas Bacterianas , Atividade Bactericida do Sangue , Gonorreia/prevenção & controle , Humanos , Neisseria gonorrhoeae/imunologia
13.
mBio ; 12(2)2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758087

RESUMO

The lipooligosaccharide (LOS) of Neisseria gonorrhoeae plays key roles in pathogenesis and is composed of multiple possible glycoforms. These glycoforms are generated by the process of phase variation and by differences in the glycosyltransferase gene content of particular strains. LOS glycoforms of N. gonorrhoeae can be terminated with an N-acetylneuraminic acid (Neu5Ac), which imparts resistance to the bactericidal activity of serum. However, N. gonorrhoeae cannot synthesize the CMP-Neu5Ac required for LOS biosynthesis and must acquire it from the host. In contrast, Neisseria meningitidis can synthesize endogenous CMP-Neu5Ac, the donor molecule for Neu5Ac, which is a component of some meningococcal capsule structures. Both species have an almost identical LOS sialyltransferase, Lst, that transfers Neu5Ac from CMP-Neu5Ac to the terminus of LOS. Lst is homologous to the LsgB sialyltransferase of nontypeable Haemophilus influenzae (NTHi). Studies in NTHi have demonstrated that LsgB can transfer keto-deoxyoctanoate (KDO) from CMP-KDO to the terminus of LOS in place of Neu5Ac. Here, we show that Lst can also transfer KDO to LOS in place of Neu5Ac in both N. gonorrhoeae and N. meningitidis Consistent with access to the pool of CMP-KDO in the cytoplasm, we present data indicating that Lst is localized in the cytoplasm. Lst has previously been reported to be localized on the outer membrane. We also demonstrate that KDO is expressed as a terminal LOS structure in vivo in samples from infected women and further show that the anti-KDO monoclonal antibody 6E4 can mediate opsonophagocytic killing of N. gonorrhoeae Taken together, these studies indicate that KDO expressed on gonococcal LOS represents a new antigen for the development of vaccines against gonorrhea.IMPORTANCE The emergence of multidrug-resistant N. gonorrhoeae strains that are resistant to available antimicrobials is a current health emergency, and no vaccine is available to prevent gonococcal infection. Lipooligosaccharide (LOS) is one of the major virulence factors of N. gonorrhoeae The sialic acid N-acetylneuraminic acid (Neu5Ac) is present as the terminal glycan on LOS in N. gonorrhoeae In this study, we made an unexpected discovery that KDO can be incorporated as the terminal glycan on LOS of N. gonorrhoeae by the alpha-2,3-sialyltransferase Lst. We showed that N. gonorrhoeae express KDO on LOS in vivo and that the KDO-specific monoclonal antibody 6E4 can direct opsonophagocytic killing of N. gonorrhoeae These data support further development of KDO-LOS structures as vaccine antigens for the prevention of infection by N. gonorrhoeae.


Assuntos
Gonorreia/prevenção & controle , Lipopolissacarídeos/metabolismo , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/genética , Sialiltransferases/genética , Sialiltransferases/metabolismo , Antígenos de Bactérias/análise , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Vacinas Bacterianas , Colo do Útero/microbiologia , Células Epiteliais/microbiologia , Feminino , Humanos , Lipopolissacarídeos/genética , Lipopolissacarídeos/imunologia , Ácido N-Acetilneuramínico/metabolismo , Neisseria gonorrhoeae/patogenicidade , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose/imunologia , beta-Galactosídeo alfa-2,3-Sialiltransferase
14.
BMC Microbiol ; 10: 305, 2010 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-21118497

RESUMO

BACKGROUND: Campylobacter jejuni is a major bacterial cause of food-borne enteritis, and its lipooligosaccharide (LOS) plays an initiating role in the development of the autoimmune neuropathy, Guillain-Barré syndrome, by induction of anti-neural cross-reactive antibodies through ganglioside molecular mimicry. RESULTS: Herein we describe the existence and heterogeneity of multiple LOS forms in C. jejuni strains of human and chicken origin grown at 37 °C and 42 °C, respectively, as determined on sodium dodecyl sulphate-polyacrylamide electrophoresis gels with carbohydrate-specific silver staining and blotting with anti-ganglioside ligands, and confirmed by nuclear magnetic resonance (NMR) spectroscopy. The C. jejuni NCTC 11168 original isolate (11168-O) was compared to its genome-sequenced variant (11168-GS), and both were found to have a lower-M(r) LOS form, which was different in size and structure to the previously characterized higher-M(r) form bearing GM1 mimicry. The lower-M(r) form production was found to be dependent on the growth temperature as the production of this form increased from ~5%, observed at 37 °C to ~35% at 42 °C. The structure of the lower-M(r) form contained a ß-D-Gal-(1→3)-ß-D-GalNAc disaccharide moiety which is consistent with the termini of the GM1, asialo-GM1, GD1, GT1 and GQ1 gangliosides, however, it did not display GM1 mimicry as assessed in blotting studies but was shown in NMR to resemble asialo-GM1. The production of multiple LOS forms and lack of GM1 mimicry was not a result of phase variation in the genes tested of NCTC 11168 and was also observed in most of the human and chicken isolates of C. jejuni tested. CONCLUSION: The presence of differing amounts of LOS forms at 37 and 42 °C, and the variety of forms observed in different strains, indicate that LOS form variation may play a role in an adaptive mechanism or a stress response of the bacterium during the colonization of different hosts.


Assuntos
Infecções por Campylobacter/microbiologia , Infecções por Campylobacter/veterinária , Campylobacter jejuni/metabolismo , Lipopolissacarídeos/metabolismo , Doenças das Aves Domésticas/microbiologia , Animais , Campylobacter jejuni/química , Campylobacter jejuni/genética , Campylobacter jejuni/isolamento & purificação , Galinhas , Humanos , Lipopolissacarídeos/análise , Fenótipo , Temperatura
15.
Vaccines (Basel) ; 8(2)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414194

RESUMO

Due to the continuing emergence of multidrug resistant strains of Neisseria gonorrhoeae there is an urgent need for the development of a gonococcal vaccine. We evaluated the gonococcal Neisseria heparin binding antigen (NHBA) as a potential vaccine candidate, in terms of its sequence conservation and expression in a range of N. gonorrhoeae strains, as well as its immunogenicity and the functional activity of antibodies raised to either the full length NHBA or a C-terminal fragment of NHBA (NHBA-c). The gene encoding NHBA is highly conserved and expressed in all N. gonorrhoeae strains investigated. Recombinant NHBA is immunogenic, and mice immunized with either NHBA or NHBA-c adjuvanted with either Freund's or aluminium hydroxide (alum) generated a humoral immune response, with predominantly IgG1 antibodies. Antibodies generated by both NHBA and NHBA-c antigens promoted complement activation and mediated bacterial killing via both serum bactericidal activity and opsonophagocytic activity, with slightly higher titers seen for the NHBA-c antigen. Anti-NHBA was also able to block the functional activity of NHBA by reducing binding to heparin and adherence to cervical and urethral epithelial cells. These data suggest that the gonococcal NHBA is a promising vaccine antigen to include in a vaccine to control N. gonorrhoeae.

16.
mBio ; 10(4)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289181

RESUMO

Neisseria gonorrhoeae is a significant threat to global health for which a vaccine and novel treatment options are urgently needed. Glycans expressed by human cells are commonly targeted by pathogens to facilitate interactions with the host, and thus characterization of these interactions can aid identification of bacterial receptors that can be exploited as vaccine and/or drug targets. Using glycan array analysis, we identified 247 specific interactions between N. gonorrhoeae and glycans representative of those found on human cells. Interactions included those with mannosylated, fucosylated, and sialylated glycans, glycosaminoglycans (GAGs), and glycans terminating with galactose (Gal), N-acetylgalactosamine (GalNAc), and N-acetylglucosamine (GlcNAc). By investigating the kinetics of interactions with selected glycans, we demonstrate that whole-cell N. gonorrhoeae has a high affinity for mannosylated glycans (dissociation constant [KD ], 0.14 to 0.59 µM), which are expressed on the surface of cervical and urethral epithelial cells. Using chromatography coupled with mass spectrometric (MS) analysis, we identified potential mannose-binding proteins in N. gonorrhoeae Pretreatment of cells with mannose-specific lectin (concanavalin A) or free mannose competitor (α-methyl-d-mannopyranoside) substantially reduced gonococcal adherence to epithelial cells. This suggests that N. gonorrhoeae targets mannosyl glycans to facilitate adherence to host cells and that mannosides or similar compounds have the potential to be used as a novel treatment option for N. gonorrhoeaeIMPORTANCE Multidrug-resistant strains of Neisseria gonorrhoeae are emerging worldwide, and novel treatment and prevention strategies are needed. Glycans are ubiquitously expressed by all human cells and can be specifically targeted by pathogens to facilitate association with host cells. Here we identify and characterize the N. gonorrhoeae host-glycan binding profile (glycointeractome), which revealed numerous interactions, including high-affinity binding to mannosyl glycans. We identify gonococcal potential mannose-binding proteins and show that N. gonorrhoeae uses mannosyl glycans expressed on the surface of cervical and urethral epithelia to facilitate adherence. Furthermore, a mannose-binding lectin or a mannoside compound was able to reduce this adherence. By characterizing the glycointeractome of N. gonorrhoeae, we were able to elucidate a novel mechanism used by this important pathogen to interact with human cells, and this interaction could be exploited to develop novel therapeutics to treat antibiotic-resistant gonorrhea.


Assuntos
Aderência Bacteriana/fisiologia , Colo do Útero/citologia , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Neisseria gonorrhoeae/metabolismo , Polissacarídeos/metabolismo , Uretra/citologia , Aderência Bacteriana/efeitos dos fármacos , Células Cultivadas , Concanavalina A/farmacologia , Células Epiteliais/efeitos dos fármacos , Feminino , Gonorreia/microbiologia , Humanos , Masculino , Lectina de Ligação a Manose/metabolismo , Metilglicosídeos/farmacologia , Análise em Microsséries , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/patogenicidade
17.
Front Immunol ; 10: 137, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30787927

RESUMO

Control of the sexually transmitted infection gonorrhea is a major public health challenge, due to the recent emergence of multidrug resistant strains of Neisseria gonorrhoeae, and there is an urgent need for novel therapies or a vaccine to prevent gonococcal disease. In this study, we evaluated the methionine sulfoxide reductase (MsrA/B) of N. gonorrhoeae as a potential vaccine candidate, in terms of its expression, sequence conservation, localization, immunogenicity, and the functional activity of antibodies raised to it. Gonococcal MsrA/B has previously been shown to reduce methionine sulfoxide [Met(O)] to methionine (Met) in oxidized proteins and protect against oxidative stress. Here we have shown that the gene encoding MsrA/B is present, highly conserved, and expressed in all N. gonorrhoeae strains investigated, and we determined that MsrA/B is surface is exposed on N. gonorrhoeae. Recombinant MsrA/B is immunogenic, and mice immunized with MsrA/B and either aluminum hydroxide gel adjuvant or Freund's adjuvant generated a humoral immune response, with predominantly IgG1 antibodies. Higher titers of IgG2a, IgG2b, and IgG3 were detected in mice immunized with MsrA/B-Freund's adjuvant compared to MsrA/B-aluminum hydroxide adjuvant, while IgM titers were similar for both adjuvants. Antibodies generated by MsrA/B-Freund's in mice mediated bacterial killing via both serum bactericidal activity and opsonophagocytic activity. Anti-MsrA/B was also able to functionally block the activity of MsrA/B by inhibiting binding to its substrate, Met(O). We propose that recombinant MsrA/B is a promising vaccine antigen for N. gonorrhoeae.


Assuntos
Antígenos de Bactérias/imunologia , Vacinas Bacterianas , Metionina Sulfóxido Redutases/imunologia , Neisseria gonorrhoeae/imunologia , Animais , Antígenos de Bactérias/genética , Feminino , Imunogenicidade da Vacina , Metionina Sulfóxido Redutases/genética , Camundongos Endogâmicos BALB C , Neisseria gonorrhoeae/enzimologia , Proteínas Recombinantes/imunologia
18.
Methods Mol Biol ; 1969: 113-121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30877673

RESUMO

A growing body of evidence suggests that glycans are important for meningococcal host-pathogen interactions and virulence. The development of glycobiology techniques such as glycan array analysis and surface plasmon resonance (SPR) has increased awareness of the importance of glycans in biological processes and has increased the interest of their study. While these techniques are more routinely used with purified proteins, there is growing interest in their applicability to cell-based studies, to better emulate host-pathogen interactions in vivo. Here we describe the use of glycan array analysis and SPR for the investigation of glycan binding by Neisseria meningitidis cells. Used together, these methods can help identify and characterize N. meningitidis glycointeractions.


Assuntos
Glicômica/métodos , Ensaios de Triagem em Larga Escala/métodos , Interações Hospedeiro-Patógeno , Neisseria meningitidis/metabolismo , Polissacarídeos/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Fatores de Virulência/metabolismo , Cromatografia de Afinidade , Humanos
19.
Sci Rep ; 8(1): 6512, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695781

RESUMO

Neisseria meningitidis is a Gram-negative bacterial pathogen that causes life threatening meningitis and septicemia. Neisseria Heparin Binding Antigen (NHBA) is an outer membrane protein that binds heparin and heparan sulfate and DNA. This protein is one of the four antigens in the meningococcal serogroup B vaccine Bexsero. In the current study, we sought to define the full glycan-binding repertoire of NHBA to better understand its role in meningococcal pathogenesis and vaccine efficacy. Glycan array analysis revealed binding to 28 structures by recombinant NHBA. Surface plasmon resonance was used to confirm the binding phenotype and to determine the affinity of the interactions. These studies revealed that the highest affinity binding of NHBA was with chondroitin sulfate (KD = 5.2 nM). This affinity is 10-fold higher than observed for heparin. Analysis of binding with well-defined disaccharides of the different chondroitin sulfate types demonstrated that the most preferred ligand has a sulfate at the 2 position of the GlcA/IdoA and 6 position of the GalNAc, which is an equivalent structure to chondroitin sulfate D. Chondroitin sulfate is widely expressed in human tissues, while chondroitin sulfate D is predominantly expressed in the brain and may constitute a new receptor structure for meningococci.


Assuntos
Antígenos de Bactérias/imunologia , Sulfatos de Condroitina/imunologia , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Neisseria/imunologia , Anticorpos Antibacterianos/imunologia , Proteínas de Transporte/imunologia , Humanos , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA