Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34282013

RESUMO

Seismic surveys are used to locate oil and gas reserves below the seabed and can be a major source of noise in marine environments. Their effects on commercial fisheries are a subject of debate, with experimental studies often producing results that are difficult to interpret. We overcame these issues in a large-scale experiment that quantified the impacts of exposure to a commercial seismic source on an assemblage of tropical demersal fishes targeted by commercial fisheries on the North West Shelf of Western Australia. We show that there were no short-term (days) or long-term (months) effects of exposure on the composition, abundance, size structure, behavior, or movement of this fauna. These multiple lines of evidence suggest that seismic surveys have little impact on demersal fishes in this environment.


Assuntos
Acústica/instrumentação , Ecossistema , Pesqueiros/estatística & dados numéricos , Peixes/crescimento & desenvolvimento , Dinâmica Populacional , Animais , Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Austrália Ocidental
2.
Am Nat ; 201(4): 586-602, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958006

RESUMO

AbstractUnifying models have shown that the amount of space used by animals (e.g., activity space, home range) scales allometrically with body mass for terrestrial taxa; however, such relationships are far less clear for marine species. We compiled movement data from 1,596 individuals across 79 taxa collected using a continental passive acoustic telemetry network of acoustic receivers to assess allometric scaling of activity space. We found that ectothermic marine taxa do exhibit allometric scaling for activity space, with an overall scaling exponent of 0.64. However, body mass alone explained only 35% of the variation, with the remaining variation best explained by trophic position for teleosts and latitude for sharks, rays, and marine reptiles. Taxon-specific allometric relationships highlighted weaker scaling exponents among teleost fish species (0.07) than sharks (0.96), rays (0.55), and marine reptiles (0.57). The allometric scaling relationship and scaling exponents for the marine taxonomic groups examined were lower than those reported from studies that had collated both marine and terrestrial species data derived using various tracking methods. We propose that these disparities arise because previous work integrated summarized data across many studies that used differing methods for collecting and quantifying activity space, introducing considerable uncertainty into slope estimates. Our findings highlight the benefit of using large-scale, coordinated animal biotelemetry networks to address cross-taxa evolutionary and ecological questions.


Assuntos
Organismos Aquáticos , Peixes , Animais , Comportamento de Retorno ao Território Vital
3.
Biol Lett ; 19(10): 20230142, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37875159

RESUMO

Body-size relationships between predators and prey exhibit remarkable diversity. However, the assumption that predators typically consume proportionally smaller prey often underlies size-dependent predation in ecosystem models. In reality, some animals can consume larger prey or exhibit limited changes in prey size as they grow larger themselves. These distinct predator-prey size relationships challenge the conventional assumptions of traditional size-based models. Cephalopods, with their diverse feeding behaviours and life histories, offer an excellent case study to investigate the impact of greater biological realism in predator-prey size relationships on energy flow within a size-structured ecosystem model. By categorizing cephalopods into high and low-activity groups, in line with empirically derived, distinct predator-prey size relationships, we found that incorporating greater biological realism in size-based feeding reduced ecosystem biomass and production, while simultaneously increasing biomass stability and turnover. Our results have broad implications for ecosystem modelling, since distinct predator-prey size relationships extend beyond cephalopods, encompassing a wide array of major taxonomic groups from filter-feeding fishes to baleen whales. Incorporating a diversity of size-based feeding in food web models can enhance their ecological and predictive accuracy when studying ecosystem dynamics.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Biomassa , Tamanho Corporal , Comportamento Alimentar , Comportamento Predatório , Modelos Biológicos
4.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258589

RESUMO

Field metabolic rate (FMR) is a holistic measure of metabolism representing the routine energy utilization of a species living within a specific ecological context, thus providing insight into its ecology, fitness and resilience to environmental stressors. For animals that cannot be easily observed in the wild, FMR can also be used in concert with dietary data to quantitatively assess their role as consumers, improving understanding of the trophic linkages that structure food webs and allowing for informed management decisions. Here, we modelled the FMR of Greenland sharks (Somniosus microcephalus) equipped with biologger packages or pop-up archival satellite tags (PSATs) in two coastal inlets of Baffin Island (Nunavut) using metabolic scaling relationships for mass, temperature and activity. We estimated that Greenland sharks had an overall mean (±s.d.) FMR of 21.67±2.30 mg O2 h-1 kg-0.84 (n=30; 1-4 day accelerometer package deployments) while residing inside these cold-water fjord systems in the late summer, and 25.48±0.47 mg O2 h-1 kg-0.84 (n=6; PSATs) over an entire year. When considering prey consumption rate, an average shark in these systems (224 kg) requires a maintenance ration of 61-193 g of fish or marine mammal prey daily. As Greenland sharks are a lethargic polar species, these low FMR estimates, and corresponding prey consumption estimates, suggest they require very little energy to sustain themselves under natural conditions. These data provide the first characterization of the energetics and consumer role of this vulnerable and understudied species in the wild, which is essential given growing pressures from climate change and expanding commercial fisheries in the Arctic.


Assuntos
Tubarões , Animais , Regiões Árticas , Cação (Peixe) , Pesqueiros , Cadeia Alimentar , Groenlândia , Mamíferos , Tubarões/metabolismo
5.
Biol Conserv ; 256: 108995, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34580542

RESUMO

COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia's national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic.

6.
Proc Natl Acad Sci U S A ; 115(43): E10275-E10282, 2018 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-30297399

RESUMO

Bottom trawlers land around 19 million tons of fish and invertebrates annually, almost one-quarter of wild marine landings. The extent of bottom trawling footprint (seabed area trawled at least once in a specified region and time period) is often contested but poorly described. We quantify footprints using high-resolution satellite vessel monitoring system (VMS) and logbook data on 24 continental shelves and slopes to 1,000-m depth over at least 2 years. Trawling footprint varied markedly among regions: from <10% of seabed area in Australian and New Zealand waters, the Aleutian Islands, East Bering Sea, South Chile, and Gulf of Alaska to >50% in some European seas. Overall, 14% of the 7.8 million-km2 study area was trawled, and 86% was not trawled. Trawling activity was aggregated; the most intensively trawled areas accounting for 90% of activity comprised 77% of footprint on average. Regional swept area ratio (SAR; ratio of total swept area trawled annually to total area of region, a metric of trawling intensity) and footprint area were related, providing an approach to estimate regional trawling footprints when high-resolution spatial data are unavailable. If SAR was ≤0.1, as in 8 of 24 regions, there was >95% probability that >90% of seabed was not trawled. If SAR was 7.9, equal to the highest SAR recorded, there was >95% probability that >70% of seabed was trawled. Footprints were smaller and SAR was ≤0.25 in regions where fishing rates consistently met international sustainability benchmarks for fish stocks, implying collateral environmental benefits from sustainable fishing.


Assuntos
Pesqueiros/estatística & dados numéricos , Alaska , Animais , Austrália , Biodiversidade , Chile , Ecossistema , Invertebrados/fisiologia , Nova Zelândia , Oceanos e Mares , Alimentos Marinhos/estatística & dados numéricos
7.
J Anim Ecol ; 89(11): 2692-2703, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32895913

RESUMO

Individual body size strongly influences the trophic role of marine organisms and the structure and function of marine ecosystems. Quantifying trophic position-individual body size relationships (trophic allometries) underpins the development of size-structured ecosystem models to predict abundance and the transfer of energy through ecosystems. Trophic allometries are well studied for fishes but remain relatively unexplored for cephalopods. Cephalopods are important components of coastal, oceanic and deep-sea ecosystems, and they play a key role in the transfer of biomass from low trophic positions to higher predators. It is therefore important to resolve cephalopod trophic allometries to accurately represent them within size-structured ecosystem models. We assessed the trophic positions of cephalopods in an oceanic pelagic (0-500 m) community (sampled by trawling in a cold-core eddy in the western Tasman Sea), comprising 22 species from 12 families, using bulk tissue stable isotope analysis and amino acid compound-specific stable isotope analysis. We assessed whether ontogenetic trophic position shifts were evident at the species-level and tested for the best predictor of community-level trophic allometry among body size, taxonomy and functional grouping (informed by fin and mantle morphology). Individuals in this cephalopod community spanned two trophic positions and fell into three functional groups on an activity level gradient: low, medium and high. The relationship between trophic position and ontogeny varied among species, with the most marked differences evident between species from different functional groups. Activity-level-based functional group and individual body size are best explained by cephalopod trophic positions (marginal R2  = 0.43). Our results suggest that the morphological traits used to infer activity level, such as fin-to-mantle length ratio, fin musculature and mantle musculature are strong predictors of cephalopod trophic allometries. Contrary to established theory, not all cephalopods are voracious predators. Low activity level cephalopods have a distinct feeding mode, with low trophic positions and little-to-no ontogenetic increases. Given the important role of cephalopods in marine ecosystems, distinct feeding modes could have important consequences for energy pathways and ecosystem structure and function. These findings will facilitate trait-based and other model estimates of cephalopod abundance in the changing global ocean.


Assuntos
Cefalópodes , Ecossistema , Animais , Organismos Aquáticos , Cadeia Alimentar , Estado Nutricional , Oceanos e Mares
8.
Proc Natl Acad Sci U S A ; 114(40): E8537-E8546, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923925

RESUMO

Seismic surveys map the seabed using intense, low-frequency sound signals that penetrate kilometers into the Earth's crust. Little is known regarding how invertebrates, including economically and ecologically important bivalves, are affected by exposure to seismic signals. In a series of field-based experiments, we investigate the impact of exposure to seismic surveys on scallops, using measurements of physiological and behavioral parameters to determine whether exposure may cause mass mortality or result in other sublethal effects. Exposure to seismic signals was found to significantly increase mortality, particularly over a chronic (months postexposure) time scale, though not beyond naturally occurring rates of mortality. Exposure did not elicit energetically expensive behaviors, but scallops showed significant changes in behavioral patterns during exposure, through a reduction in classic behaviors and demonstration of a nonclassic "flinch" response to air gun signals. Furthermore, scallops showed persistent alterations in recessing reflex behavior following exposure, with the rate of recessing increasing with repeated exposure. Hemolymph (blood analog) physiology showed a compromised capacity for homeostasis and potential immunodeficiency, as a range of hemolymph biochemistry parameters were altered and the density of circulating hemocytes (blood cell analog) was significantly reduced, with effects observed over acute (hours to days) and chronic (months) scales. The size of the air gun had no effect, but repeated exposure intensified responses. We postulate that the observed impacts resulted from high seabed ground accelerations driven by the air gun signal. Given the scope of physiological disruption, we conclude that seismic exposure can harm scallops.


Assuntos
Acústica , Comportamento Animal , Exposição Ambiental , Ruído , Pecten/fisiologia , Som , Estresse Fisiológico , Animais
9.
Proc Biol Sci ; 286(1907): 20191424, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31337309

RESUMO

The effects of anthropogenic aquatic noise on marine invertebrates are poorly understood. We investigated the impact of seismic surveys on the righting reflex and statocyst morphology of the palinurid rock lobster, Jasus edwardsii, using field-based exposure to air gun signals. Following exposure equivalent to a full-scale commercial assay passing within 100-500 m, lobsters showed impaired righting and significant damage to the sensory hairs of the statocyst. Reflex impairment and statocyst damage persisted over the course of the experiments-up to 365 days post-exposure and did not improved following moulting. These results indicate that exposure to air gun signals caused morphological damage to the statocyst of rock lobsters, which can in turn impair complex reflexes. This damage and impairment adds further evidence that anthropogenic aquatic noise has the potential to harm invertebrates, necessitating a better understanding of possible ecological and economic impacts.


Assuntos
Ruído/efeitos adversos , Palinuridae/fisiologia , Acústica , Animais , Feminino , Armas de Fogo , Palinuridae/efeitos da radiação , Reflexo de Endireitamento/fisiologia , Reflexo de Endireitamento/efeitos da radiação , Órgãos dos Sentidos/fisiologia , Órgãos dos Sentidos/efeitos da radiação
10.
J Exp Biol ; 222(Pt 4)2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30777873

RESUMO

Some fishes and sea turtles are distinct from ectotherms by having elevated core body temperatures and metabolic rates. Quantifying the energetics and activity of the regionally endothermic species will help us understand how a fundamental biophysical process (i.e. temperature-dependent metabolism) shapes animal ecology; however, such information is limited owing to difficulties in studying these large, highly active animals. White sharks, Carcharodon carcharias, are the largest fish with regional endothermy, and potentially among the most energy-demanding fishes. Here, we deployed multi-sensor loggers on eight white sharks aggregating near colonies of long-nosed fur seals, Arctocephalus forsteri, off the Neptune Islands, Australia. Simultaneous measurements of depth, swim speed (a proxy for swimming metabolic rate) and body acceleration (indicating when sharks exhibited energy-efficient gliding behaviour) revealed their fine-scale swimming behaviour and allowed us to estimate their energy expenditure. Sharks repeatedly dived (mean swimming depth, 29 m) and swam at the surface between deep dives (maximum depth, 108 m). Modal swim speeds (0.80-1.35 m s-1) were slower than the estimated speeds that minimize cost of transport (1.3-1.9 m s-1), a pattern analogous to a 'sit-and-wait' strategy for a perpetually swimming species. All but one shark employed unpowered gliding during descents, rendering deep (>50 m) dives 29% less costly than surface swimming, which may incur additional wave drag. We suggest that these behavioural strategies may help sharks to maximize net energy gains by reducing swimming cost while increasing encounter rates with fast-swimming seals.


Assuntos
Metabolismo Energético , Tubarões/fisiologia , Natação , Animais , Feminino , Masculino , Comportamento Predatório
11.
Conserv Biol ; 33(2): 403-412, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30091174

RESUMO

Some species may have a larger role than others in the transfer of complex effects of multiple human stressors, such as changes in biomass, through marine food webs. We devised a novel approach to identify such species. We constructed annual interaction-effect networks (IENs) of the simulated changes in biomass between species of the southeastern Australian marine system. Each annual IEN was composed of the species linked by either an additive (sum of the individual stressor response), synergistic (lower biomass compared with additive effects), or antagonistic (greater biomass compared with additive effects) response to the interaction effect of ocean warming, ocean acidification, and fisheries. Structurally, over the simulation period, the number of species and links in the synergistic IENs increased and the network structure became more stable. The stability of the antagonistic IENs decreased and became more vulnerable to the loss of species. In contrast, there was no change in the structural attributes of species linked by an additive response. Using indices common in food-web and network theory, we identified the species in each IEN for which a change in biomass from stressor effects would disproportionately affect the biomass of other species via direct and indirect local, intermediate, and global predator-prey feeding interactions. Knowing the species that transfer the most synergistic or antagonistic responses in a food-web may inform conservation under increasing multiple-stressor impacts.


Identificación de las Especies Importantes que Amplifican o Mitigan los Efectos Interactivos de los Impactos Humanos Resumen Algunas especies pueden tener un papel más importante que otras en la transferencia de los efectos complejos de múltiples estresantes humanos, como los cambios en la biomasa por medio de las redes alimenticias marinas. Diseñamos una metodología novedosa para identificar a dichas especies. Construimos una red de efectos anuales de interacción (IEN, en inglés) a partir de los cambios simulados en la biomasa entre especies del sistema marino del sureste de Australia. Cada IEN anual estuvo compuesta por las especies conectadas por una respuesta aditiva (la suma de las respuestas individuales al estresante), sinérgica (una biomasa menor en comparación con los efectos aditivos) o antagónica (una mayor biomasa en comparación con los efectos aditivos) ante los efectos de interacción del calentamiento oceánico, la acidificación oceánica, y las pesquerías. Estructuralmente, durante el periodo de simulación, el número de especies y conexiones en los IEN sinérgicos incrementó y la estructura de la red se volvió más estable. La estabilidad de las IEN antagónicas disminuyó y se volvió más vulnerable ante la pérdida de especies. En contraste, no hubo cambio en los atributos estructurales de las especies conectadas por una respuesta aditiva. Con el uso de índices comunes entre las redes alimenticias y la teoría de redes identificamos a las especies en cada IEN para las cuales un cambio en la biomasa por causa de los efectos estresantes afectaría desproporcionalmente a la biomasa de las otras especies por medio de interacciones de alimentación locales, intermedias y globales del tipo depredador - presa directas o indirectas. Si sabemos cuáles especies transfieren el mayor número de respuestas sinérgicas o antagónicas en una red alimenticia podemos informar a la conservación que está bajo impactos estresantes cada vez mayores.


Assuntos
Conservação dos Recursos Naturais , Cadeia Alimentar , Austrália , Humanos , Concentração de Íons de Hidrogênio , Água do Mar
12.
Glob Chang Biol ; 24(1): e90-e100, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28869695

RESUMO

We have little empirical evidence of how large-scale overlaps between large numbers of marine species may have altered in response to human impacts. Here, we synthesized all available distribution data (>1 million records) since 1992 for 61 species of the East Australian marine ecosystem, a global hot spot of ocean warming and continuing fisheries exploitation. Using a novel approach, we constructed networks of the annual changes in geographical overlaps between species. Using indices of changes in species overlap, we quantified changes in the ecosystem stability, species robustness, species sensitivity and structural keystone species. We then compared the species overlap indices with environmental and fisheries data to identify potential factors leading to the changes in distributional overlaps between species. We found that the structure of the ecosystem has changed with a decrease in asymmetrical geographical overlaps between species. This suggests that the ecosystem has become less stable and potentially more susceptible to environmental perturbations. Most species have shown a decrease in overlaps with other species. The greatest decrease in species overlap robustness and sensitivity to the loss of other species has occurred in the pelagic community. Some demersal species have become more robust and less sensitive. Pelagic structural keystone species, predominately the tunas and billfish, have been replaced by demersal fish species. The changes in species overlap were strongly correlated with regional oceanographic changes, in particular increasing ocean warming and the southward transport of warmer and saltier water with the East Australian Current, but less correlated with fisheries catch. Our study illustrates how large-scale multispecies distribution changes can help identify structural changes in marine ecosystems associated with climate change.


Assuntos
Mudança Climática , Ecossistema , Peixes/classificação , Peixes/fisiologia , Animais , Austrália , Pesqueiros , Humanos , Dinâmica Populacional
13.
J Exp Biol ; 219(Pt 13): 2028-38, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27207636

RESUMO

Shark nurseries are susceptible to environmental fluctuations in salinity because of their shallow, coastal nature; however, the physiological impacts on resident elasmobranchs are largely unknown. Gummy sharks (Mustelus antarcticus) and school sharks (Galeorhinus galeus) use the same Tasmanian estuary as a nursery ground; however, each species has distinct distribution patterns that are coincident with changes in local environmental conditions, such as increases in salinity. We hypothesized that these differences were directly related to differential physiological tolerances to high salinity. To test this hypothesis, we exposed wild, juvenile school and gummy sharks to an environmentally relevant hypersaline (120% SW) event for 48 h. Metabolic rate decreased 20-35% in both species, and gill Na(+)/K(+)-ATPase activity was maintained in gummy sharks but decreased 37% in school sharks. We measured plasma ions (Na(+), K(+), Cl(-)) and osmolytes [urea and trimethylamine oxide (TMAO)], and observed a 33% increase in plasma Na(+) in gummy sharks with hyperosmotic exposure, while school sharks displayed a typical ureosmotic increase in plasma urea (∼20%). With elevated salinity, gill TMAO concentration increased by 42% in school sharks and by 30% in gummy sharks. Indicators of cellular stress (heat shock proteins HSP70, 90 and 110, and ubiquitin) significantly increased in gill and white muscle in both a species- and a tissue-specific manner. Overall, gummy sharks exhibited greater osmotic perturbation and ionic dysregulation and a larger cellular stress response compared with school sharks. Our findings provide physiological correlates to the observed distribution and movement of these shark species in their critical nursery grounds.


Assuntos
Distribuição Animal , Osmorregulação , Salinidade , Tubarões/fisiologia , Animais , Análise Química do Sangue , Ecossistema , Reprodução , Água do Mar/análise
14.
Artigo em Inglês | MEDLINE | ID: mdl-27063208

RESUMO

The generalized energy budget for fish (i.e., Energy Consumed=Metabolism+Waste+Growth) is as relevant today as when it was first proposed decades ago and serves as a foundational concept in fish biology. Yet, generating accurate measurements of components of the bioenergetics equation in wild fish is a major challenge. How often does a fish eat and what does it consume? How much energy is expended on locomotion? How do human-induced stressors influence energy acquisition and expenditure? Generating answers to these questions is important to fisheries management and to our understanding of adaptation and evolutionary processes. The advent of electronic tags (transmitters and data loggers) has provided biologists with improved opportunities to understand bioenergetics in wild fish. Here, we review the growing diversity of electronic tags with a focus on sensor-equipped devices that are commercially available (e.g., heart rate/electrocardiogram, electromyogram, acceleration, image capture). Next, we discuss each component of the bioenergetics model, recognizing that most research to date has focused on quantifying the activity component of metabolism, and identify ways in which the other, less studied components (e.g., consumption, specific dynamic action component of metabolism, somatic growth, reproductive investment, waste) could be estimated remotely. We conclude with a critical but forward-looking appraisal of the opportunities and challenges in using existing and emerging electronic sensor-tags for the study of fish energetics in the wild. Electronic tagging has become a central and widespread tool in fish ecology and fisheries management; the growing and increasingly affordable toolbox of sensor tags will ensure this trend continues, which will lead to major advances in our understanding of fish biology over the coming decades.


Assuntos
Metabolismo Energético , Peixes/metabolismo , Telemetria/veterinária , Acelerometria/veterinária , Animais , Animais Selvagens/metabolismo , Ecossistema , Eletromiografia/veterinária , Peixes/fisiologia , Frequência Cardíaca , Modelos Biológicos , Natação/fisiologia
15.
Front Zool ; 12: 6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25897316

RESUMO

INTRODUCTION: The Antarctic Ocean hosts a rich and diverse fauna despite inhospitable temperatures close to freezing, which require specialist adaptations to sustain animal activity and various underlying body functions. While oxygen transport has been suggested to be key in setting thermal tolerance in warmer climates, this constraint is relaxed in Antarctic fishes and crustaceans, due to high levels of dissolved oxygen. Less is known about how other Antarctic ectotherms cope with temperatures near zero, particularly the more active invertebrates like the abundant octopods. A continued reliance on the highly specialised blood oxygen transport system of cephalopods may concur with functional constraints at cold temperatures. We therefore analysed the octopod's central oxygen transport component, the blue blood pigment haemocyanin, to unravel strategies that sustain oxygen supply at cold temperatures. RESULTS: To identify adaptive compensation of blood oxygen transport in octopods from different climatic regions, we compared haemocyanin oxygen binding properties, oxygen carrying capacities as well as haemolymph protein and ion composition between the Antarctic octopod Pareledone charcoti, the South-east Australian Octopus pallidus and the Mediterranean Eledone moschata. In the Antarctic Pareledone charcoti at 0°C, oxygen unloading by haemocyanin was poor but supported by high levels of dissolved oxygen. However, lower oxygen affinity and higher oxygen carrying capacity compared to warm water octopods, still enabled significant contribution of haemocyanin to oxygen transport at 0°C. At warmer temperatures, haemocyanin of Pareledone charcoti releases most of the bound oxygen, supporting oxygen supply at 10°C. In warm water octopods, increasing oxygen affinities reduce the ability to release oxygen from haemocyanin at colder temperatures. Though, unlike Eledone moschata, Octopus pallidus attenuated this increase below 15°C. CONCLUSIONS: Adjustments of haemocyanin physiological function and haemocyanin concentrations but also high dissolved oxygen concentrations support oxygen supply in the Antarctic octopus Pareledone charcoti at near freezing temperatures. Increased oxygen supply by haemocyanin at warmer temperatures supports extended warm tolerance and thus eurythermy of Pareledone charcoti. Limited haemocyanin function towards colder temperatures in Antarctic and warm water octopods highlights the general role of haemocyanin oxygen transport in constraining cold tolerance in octopods.

16.
Oecologia ; 178(3): 761-72, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25740335

RESUMO

Capture-mark-recapture models are useful tools for estimating demographic parameters but often result in low precision when recapture rates are low. Low recapture rates are typical in many study systems including fishing-based studies. Incorporating auxiliary data into the models can improve precision and in some cases enable parameter estimation. Here, we present a novel application of acoustic telemetry for the estimation of apparent survival and abundance within capture-mark-recapture analysis using open population models. Our case study is based on simultaneously collecting longline fishing and acoustic telemetry data for a large mobile apex predator, the broadnose sevengill shark (Notorhynchus cepedianus), at a coastal site in Tasmania, Australia. Cormack-Jolly-Seber models showed that longline data alone had very low recapture rates while acoustic telemetry data for the same time period resulted in at least tenfold higher recapture rates. The apparent survival estimates were similar for the two datasets but the acoustic telemetry data showed much greater precision and enabled apparent survival parameter estimation for one dataset, which was inestimable using fishing data alone. Combined acoustic telemetry and longline data were incorporated into Jolly-Seber models using a Monte Carlo simulation approach. Abundance estimates were comparable to those with longline data only; however, the inclusion of acoustic telemetry data increased precision in the estimates. We conclude that acoustic telemetry is a useful tool for incorporating in capture-mark-recapture studies in the marine environment. Future studies should consider the application of acoustic telemetry within this framework when setting up the study design and sampling program.


Assuntos
Ecologia/métodos , Modelos Biológicos , Tubarões , Telemetria/métodos , Acústica , Animais , Demografia/métodos , Modelos Estatísticos , Método de Monte Carlo , Densidade Demográfica , Tasmânia
17.
J Exp Biol ; 217(Pt 3): 317-22, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24477606

RESUMO

The remote measurement of data from free-ranging animals has been termed 'biologging' and in recent years this relatively small set of tools has been instrumental in addressing remarkably diverse questions--from 'how will tuna respond to climate change?' to 'why are whales big?'. While a single biologging dataset can have the potential to test hypotheses spanning physiology, ecology, evolution and theoretical physics, explicit illustrations of this flexibility are scarce and this has arguably hindered the full realization of the power of biologging tools. Here we present a small set of examples from studies that have collected data on two parameters widespread in biologging research (depth and acceleration), but that have interpreted their data in the context of extremely diverse phenomena: from tests of biomechanical and diving-optimality models to identifications of feeding events, Lévy flight foraging strategies and expanding oxygen minimum zones. We use these examples to highlight the remarkable flexibility of biologging tools, and identify several mechanisms that may enhance the scope and dissemination of future biologging research programs.


Assuntos
Caniformia/fisiologia , Tubarões/fisiologia , Spheniscidae/fisiologia , Telemetria/métodos , Aceleração , Animais , Fenômenos Biomecânicos , Mergulho , Comportamento Alimentar/fisiologia , Oxigênio/metabolismo
18.
Mar Environ Res ; 196: 106402, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38402778

RESUMO

Cephalopods receive a great deal of attention due to their socioeconomically important fisheries and aquaculture industries as well their unique biological features. However, basic information about their physiological responses under stress conditions is lacking. This study investigated the impact of a simple stressor, exercise to exhaustion, on the activity levels of antioxidant enzymes and the concentrations of molecules involved in oxidative stress response in the pale octopus (Octopus pallidus). Eight biochemical assays were measured in the humoral (plasma) and cellular (hemocyte) components of O. pallidus haemolymph, the invertebrate analogue to vertebrate blood. Overall, exercise resulted in an increase in activity of plasma catalase (CAT) and glutathione-S-transferase (GST) and the decrease in activity of plasms glutathione reductase (GR). In the hemocytes, the exercise elicited a different response, with a reduction in the activity of superoxide dismutase (SOD), GR, and glutathione peroxidase (GPX) and a reduction in nitric oxide (NO) concentration. Malondialdehyde (MDA) activity was similar in the plasma and haemocytes in control and exercised treatments, indicating that exercise did not induce lipid peroxidation. These results provide an important baseline for understanding oxidative stress in octopus, with exercise to exhaustion serving as a simple stressor which will ultimately inform our ability to detect and understand physiological responses to more complex stressors.


Assuntos
Octopodiformes , Animais , Octopodiformes/metabolismo , Antioxidantes , Estresse Oxidativo , Catalase/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Peroxidação de Lipídeos , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Glutationa/metabolismo
19.
Mar Pollut Bull ; 199: 115480, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37839912

RESUMO

High-intensity, impulsive sounds are used to locate oil and gas reserves during seismic exploration of the seafloor. The impacts of this noise pollution on the health and mortality of marine invertebrates are not well known, including the silverlip pearl oyster (Pinctada maxima), which comprises one of the world's last remaining significant wildstock pearl oyster fisheries, in northwestern Australia. We exposed ≈11,000 P. maxima to a four-day experimental seismic survey, plus one vessel-control day. After exposure, survival rates were monitored throughout a full two-year production cycle, and the number and quality of pearls produced at harvest were assessed. Oysters from two groups, on one sampling day, exhibited reduced survival and pearl productivity compared to controls, but 14 other groups receiving similar or higher exposure levels did not. We therefore found no conclusive evidence of an impact of the seismic source survey on oyster mortality or pearl production.


Assuntos
Pinctada , Animais , Ruído , Som , Austrália , Pesqueiros
20.
Proc Biol Sci ; 280(1750): 20122363, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23173211

RESUMO

Activity rhythms are ubiquitous in nature, and generally synchronized with the day-night cycle. Several taxa have been shown to switch between nocturnal and diurnal activity in response to environmental variability, and these relatively uncommon switches provide a basis for greater understanding of the mechanisms and adaptive significance of circadian (approx. 24 h) rhythms. Plasticity of activity rhythms has been identified in association with a variety of factors, from changes in predation pressure to an altered nutritional or social status. Here, we report a switch in activity rhythm that is associated with rainfall. Outside periods of rain, the estuarine-associated teleost Acanthopagrus australis was most active and in shallower depths during the day, but this activity and depth pattern was reversed in the days following rain, with diurnality restored as estuarine conductivity and turbidity levels returned to pre-rain levels. Although representing the first example of a rain-induced reversal of activity rhythm in an aquatic animal of which we are aware, our results are consistent with established models on the trade-offs between predation risk and foraging efficiency.


Assuntos
Ritmo Circadiano , Atividade Motora , Perciformes/fisiologia , Acelerometria , Animais , New South Wales , Fotoperíodo , Chuva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA