Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Horm Metab Res ; 55(8): 536-545, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37192655

RESUMO

To evaluate safety and therapeutic effect along 12 months of allogenic adipose tissue-derived stromal/stem cells (ASCs) transplantation with cholecalciferol (VITD) in patients with recent-onset type 1 diabetes (T1D). Prospective, phase II, open trial, pilot study in which patients with recent onset T1D received ASCs (1xKgx106 cells) and VITD 2000UI/day for 12 months (group 1) and were compared to controls with standard insulin therapy (group 2). Adverse events, C-peptide area under the curve (CPAUC), insulin dose, HbA1c and frequency of FoxP3+ in CD4+ or CD8+ T-cells(flow cytometry) were evaluated at baseline(T0), after 3(T3), 6(T6) and 12 months(T12). Eleven patients completed follow up (7:group 1;4:group 2). Group 1 had lower insulin requirement at T3(0.24±0.18vs0.53±0.23UI/kg,p=0.04), T6(0.24±0.15vs0.66±0.33 UI/kg,p=0.04) and T12(0.39±0.15vs0.74±0.29 UI/Kg,p=0.04).HbA1c was lower at T6 (50.57±8.56vs72.25±10.34 mmol/mol,p=0.01), without differences at T12 (57.14±11.98 in group 1 vs. 73.5±14.57 mmol/min in group 2, p=0.16). CPAUC was not significantly different between groups at T0(p=0.07), higher in group 1 at T3(p=0.04) and T6(p=0.006), but similar at T12(p=0.23). IDAA1c was significantly lower in group 1 than group 2 at T3,T6 and T12 (p=0.006, 0.006 and 0.042, respectively). IDDA1c was inversely correlated to FoxP3 expression in CD4 and CD8+ T cells at T6 (p<0.001 and p=0.01, respectively). In group 1, one patient had recurrence of a benign teratoma that was surgically removed, not associated to the intervention. ASCs with VITD without immunosuppression were safe and associated lower insulin requirements, better glycemic control, and transient better pancreatic function in recent onset T1D, but the potential benefits were not sustained.


Assuntos
Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/terapia , Colecalciferol/uso terapêutico , Hemoglobinas Glicadas , Projetos Piloto , Estudos Prospectivos , Seguimentos , Insulina/metabolismo , Tecido Adiposo/metabolismo , Suplementos Nutricionais , Células-Tronco/metabolismo , Fatores de Transcrição Forkhead
2.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077462

RESUMO

Endothelial-like cells may be obtained from CD133+ mononuclear cells isolated from human umbilical cord blood (hUCB) and expanded using endothelial-inducing medium (E-CD133 cells). Their use in regenerative medicine has been explored by the potential not only to form vessels but also by the secretion of bioactive elements. Extracellular vesicles (EVs) are prominent messengers of this paracrine activity, transporting bioactive molecules that may guide cellular response under different conditions. Using RNA-Seq, we characterized the miRNA content of EVs derived from E-CD133 cells cultivated under normoxia (N-EVs) and hypoxia (H-EVs) and observed that changing the O2 status led to variations in the selective loading of miRNAs in the EVs. In silico analysis showed that among the targets of differentially loaded miRNAs, there are transcripts involved in pathways related to cell growth and survival, such as FoxO and HIF-1 pathways. The data obtained reinforce the pro-regenerative potential of EVs obtained from E-CD133 cells and shows that fine tuning of their properties may be regulated by culture conditions.


Assuntos
Vesículas Extracelulares , MicroRNAs , Proliferação de Células , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Hipóxia/metabolismo , MicroRNAs/metabolismo
3.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269664

RESUMO

Chronic kidney disease (CKD) is characterized by structural abnormalities and the progressive loss of kidney function. Extracellular vesicles (EVs) from human umbilical cord tissue (hUCT)-derived mesenchymal stem cells (MSCs) and expanded human umbilical cord blood (hUCB)-derived CD133+ cells (eCD133+) maintain the characteristics of the parent cells, providing a new form of cell-free treatment. We evaluated the effects of EVs from hUCT-derived MSCs and hUCB-derived CD133+ cells on rats with CDK induced by an adenine-enriched diet. EVs were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis (NTA) and electron microscopy. The animals were randomized and divided into the MSC-EV group, eEPC-EV group and control group. Infusions occurred on the seventh and 14th days after CKD induction. Evaluations of kidney function were carried out by biochemical and histological analyses. Intense labeling of the α-SMA protein was observed when comparing the control with MSC-EVs. In both groups treated with EVs, a significant increase in serum albumin was observed, and the increase in cystatin C was inhibited. The results indicated improvements in renal function in CKD, demonstrating the therapeutic potential of EVs derived from MSCs and eCD133+ cells and suggesting the possibility that in the future, more than one type of EV will be used concurrently.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Insuficiência Renal Crônica , Animais , Células Cultivadas , Vesículas Extracelulares/metabolismo , Sangue Fetal , Células-Tronco Mesenquimais/metabolismo , Ratos , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/terapia
4.
Genet Mol Biol ; 44(3): e20200147, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34496008

RESUMO

Induced pluripotent stem cells (iPSCs) are generated from adult cells that have been reprogrammed to pluripotency. However, in vitro cultivation and genetic reprogramming increase genetic instability, which could result in chromosomal abnormalities. Maintenance of genetic stability after reprogramming is required for possible experimental and clinical applications. The aim of this study was to analyze chromosomal alterations by using the G-banding karyotyping method applied to 97 samples from 38 iPSC cell lines generated from peripheral blood or Wharton's jelly. Samples from patients with long QT syndrome, Jervell and Lange-Nielsen syndrome and amyotrophic lateral sclerosis and from normal individuals revealed the following chromosomal alterations: acentric fragments, chromosomal fusions, premature centromere divisions, double minutes, radial figures, ring chromosomes, polyploidies, inversions and trisomies. An analysis of two samples generated from Wharton's jelly before and after reprogramming showed that abnormal clones can emerge or be selected and generate an altered lineage. IPSC lines may show clonal and nonclonal chromosomal aberrations in several passages (from P6 to P34), but these aberrations are more common in later passages. Many important chromosomal aberrations were detected, showing that G-banding is very useful for evaluating genetic instability with important repercussions for the application of iPSC lines.

5.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326648

RESUMO

Mesenchymal stromal cells (MSCs) can self-renew, differentiate into specialised cells and have different embryonic origins-ectodermal for dental pulp-derived MSCs (DPSCs) and mesodermal for adipose tissue-derived MSCs (ADSCs). Data on DPSCs adipogenic differentiation potential and timing vary, and the lack of molecular and genetic information prompted us to gain a better understanding of DPSCs adipogenic differentiation potential and gene expression profile. While DPSCs differentiated readily along osteogenic and chondrogenic pathways, after 21 days in two different types of adipogenic induction media, DPSCs cultures did not contain lipid vacuoles and had low expression levels of the adipogenic genes proliferator-activated receptor gamma (PPARG), lipoprotein lipase (LPL) and CCAAT/enhancer-binding protein alpha (CEBPA). To better understand this limitation in adipogenesis, transcriptome analysis in undifferentiated DPSCs was carried out, with the ADSC transcriptome used as a positive control. In total, 14,871 transcripts were common to DPSCs and ADSCs, some were unique (DPSCs: 471, ADSCs: 1032), and 510 were differentially expressed genes. Detailed analyses of overrepresented transcripts showed that DPSCs express genes that inhibit adipogenic differentiation, revealing the possible mechanism for their limited adipogenesis.


Assuntos
Adipogenia/genética , Polpa Dentária/citologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo/citologia , Proteína Morfogenética Óssea 1/genética , Proteína Morfogenética Óssea 1/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Imunofenotipagem , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Família Multigênica , PPAR gama/genética , PPAR gama/metabolismo , RNA-Seq , Vacúolos/metabolismo , Via de Sinalização Wnt/genética
6.
Regul Toxicol Pharmacol ; 92: 75-82, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29129620

RESUMO

With the increasing need to develop in vitro assays to replace animal use, human stem cell-derived methods are emerging and showing outstanding contributions to the toxicological screening of substances. Adult human stem cells such as adipose-derived stem cells (ADSC) and periodontal ligament stem cells (PDLSC) were used as cell substrates for a cytotoxicity assay and toxicity prediction using the neutral red uptake (NRU) assay. First, primary cell cultures from three independent donors, from each tissue source, were characterized as mesenchymal stem cells (MSC) by plastic adherence and appropriate immunophenotype for MSC markers (positive for CD90, CD73, and CD105 and negative for CD11b, CD34, CD45, HLADR, and CD19). Furthermore, ADSC and PDLSC were able to differentiate into adipocytes and osteoblasts when maintained under the same culture conditions previously established for the NRU assay. NRU assays for three reference test substances were performed. R2 was higher than 0.85 for all conditions, showing the feasibility to calculate IC50 values. The IC50 values were then used to predict the LD50 of the test substances, which were comparable to previous results and the ICCVAM standard test report. Primary ADSC and PDLSC showed the potential to be considered as additional models for use in cytotoxicity assays.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Bioensaio/métodos , Citotoxinas/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Ligamento Periodontal/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Ligamento Periodontal/metabolismo , Células-Tronco/metabolismo
7.
Cells Tissues Organs ; 203(3): 173-182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27802444

RESUMO

The tissue microenvironment regulates such stem cell behaviors as self-renewal and differentiation. Attempts to mimic components of these microenvironments could provide new strategies for culturing and directing the behavior of stem cells. The aim of the present study was to mimic cardiac and umbilical cord tissue microenvironments in vitro and compare the resulting bone marrow-derived mesenchymal stem cell (BM-MSC) behaviors. We generated tissue microenvironments using conditioned medium (CM) and extracellular matrix (ECM) samples obtained from human heart and umbilical cord tissue explant cultures and by tissue decellularization. Mass spectrometry and immunostaining were used to characterize and determine the specific protein profiles of the ECMs and CMs. We demonstrated that the ECMs and CMs were not cytotoxic to BM-MSCs and could thus be tested via cell culture. The BM-MSCs showed a higher proliferation rate when cultured with umbilical cord-derived CM compared with the other analyzed conditions. Furthermore, the ECMs increased cell adhesion and migration. However, although the conditions tested in this work were able to maintain the viability and affect the proliferation, adhesion and migration of BM-MSCs in vitro, mimicking tissue microenvironments using ECM and CM was not sufficient to induce the cardiomyogenic differentiation of BM-MSCs. The present study provides a thorough characterization of the biological activity of these ECMs and CMs in human BM-MSC cultures.


Assuntos
Microambiente Celular , Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Transdução de Sinais , Cordão Umbilical/citologia , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Matriz Extracelular/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Transdução de Sinais/efeitos dos fármacos
8.
Cryobiology ; 78: 95-100, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28645680

RESUMO

There is no consensus on aspects of equine bone marrow collection and processing. The study aimed to describe the collection of large volumes of bone marrow from horses of advanced age, with emphasis on bone marrow mononuclear cells (BMMCs) recovery and viability after cryopreservation. Fourteen horses, aged 3-24 years, were divided into three experiments. E1 studied the feasibility of collecting 200 mL from the sternums of horses of advanced age; E2 examined the number of cells obtained from the first and last syringe of each puncture; and E3 investigated the influence of heparin concentration on the prevention of cell aggregation, and cell viability after freezing in liquid nitrogen. Bone marrow aspirations were done with syringes pre-filled with Iscove's modified Dulbecco's medium and different concentrations of sodium heparin. BMMCs were counted, cell viability was determined, and samples were frozen. Bone marrow collection from the sternum is safe, even at large volumes and from horses of advanced age, and the number of cells recovered decreases with successive aspirations (p < 0.0001). Heparin concentration influenced cell aggregation, and recovered cells continued to be commercially viable after 150 days in frozen storage.


Assuntos
Células da Medula Óssea/fisiologia , Agregação Celular/efeitos dos fármacos , Criopreservação/métodos , Heparina/farmacologia , Leucócitos Mononucleares/fisiologia , Animais , Contagem de Células , Sobrevivência Celular/efeitos dos fármacos , Feminino , Congelamento , Cavalos , Masculino , Esterno/citologia
9.
Int J Mol Sci ; 18(3)2017 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-28287491

RESUMO

Sepsis is a complex systemic inflammatory syndrome, the most common cause of which is attributed to systemic underlying bacterial infection. The complete mechanisms of the dynamic pro- and anti-inflammatory processes underlying the pathophysiology of sepsis remain poorly understood. Natural killer (NK) cells play a crucial role in the pathophysiology of sepsis, leading to exaggerated inflammation due their rapid response and production of pro-inflammatory cytokines such as interferon gamma (IFN-γ). Several studies have already shown that NK cells undergo lymphopenia in the peripheral blood of patients with sepsis. However, our understanding of the mechanisms behind its cellular trafficking and its role in disease development is restricted to studies in animal models. In this study, we aimed to compare the human NK cell subset (CD56bright or dim) levels in the peripheral blood and bronchoalveolar lavage (BAL) fluid of sepsis patients. We conducted a case-control study with a sample size consisting of 10 control patients and 23 sepsis patients enrolled at the Hospital Cajuru (Curitiba/PR, Brazil) from 2013 to 2015. Although we were able to confirm previous observations of peripheral blood lymphopenia, no significant differences were detected in NK cell levels in the BAL fluid of these patients. Overall, these findings strengthened the evidence that peripheral blood lymphopenia is likely to be associated with cell death as a consequence of sepsis.


Assuntos
Líquido da Lavagem Broncoalveolar/citologia , Células Matadoras Naturais/citologia , Sepse/patologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sepse/sangue
10.
Stem Cell Res Ther ; 15(1): 301, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39278909

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressive motoneuron degenerative disorder. There are still no drugs capable of slowing disease evolution or improving life quality of ALS patients. Thus, autologous stem cell therapy has emerged as an alternative treatment regime to be investigated in clinical ALS. METHOD: Using Proteomics and Protein-Protein Interaction Network analyses combined with bioinformatics, the possible cellular mechanisms and molecular targets related to mesenchymal stem cells (MSCs, 1 × 106 cells/kg, intrathecally in the lumbar region of the spine) were investigated in cerebrospinal fluid (CSF) of ALS patients who received intrathecal infusions of autologous bone marrow-derived MSCs thirty days after cell therapy. Data are available via ProteomeXchange with identifier PXD053129. RESULTS: Proteomics revealed 220 deregulated proteins in CSF of ALS subjects treated with MSCs compared to CSF collected from the same patients prior to MSCs infusion. Bioinformatics enriched analyses highlighted events of Extracellular matrix and Cell adhesion molecules as well as related key targets APOA1, APOE, APP, C4A, C5, FGA, FGB, FGG and PLG in the CSF of cell treated ALS subjects. CONCLUSIONS: Extracellular matrix and cell adhesion molecules as well as their related highlighted components have emerged as key targets of autologous MSCs in CSF of ALS patients. TRIAL REGISTRATION: Clinicaltrial.gov identifier NCT0291768. Registered 28 September 2016.


Assuntos
Esclerose Lateral Amiotrófica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Proteômica , Transplante Autólogo , Humanos , Esclerose Lateral Amiotrófica/líquido cefalorraquidiano , Esclerose Lateral Amiotrófica/terapia , Esclerose Lateral Amiotrófica/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteômica/métodos , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/líquido cefalorraquidiano , Idoso , Apolipoproteína A-I/líquido cefalorraquidiano , Apolipoproteína A-I/metabolismo , Adulto , Células da Medula Óssea/metabolismo , Mapas de Interação de Proteínas
11.
Stem Cells Transl Med ; 13(7): 593-605, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38606986

RESUMO

Condylar resorption is an aggressive and disability form of temporomandibular joint (TMJ) degenerative disease, usually non-respondent to conservative or minimally invasive therapies and often leading to surgical intervention and prostheses implantation. This condition is also one of the most dreaded postoperative complications of orthognathic surgery, with severe cartilage erosion and loss of subchondral bone volume and mineral density, associated with a painful or not inflammatory processes. Because regenerative medicine has emerged as an alternative for orthopedic cases with advanced degenerative joint disease, we conducted a phase I/IIa clinical trial (U1111-1194-6997) to evaluate the safety and efficacy of autologous nasal septal chondroprogenitor cells. Ten participants underwent biopsy of the nasal septum cartilage during their orthognathic surgery. The harvested cells were cultured in vitro and analyzed for viability, presence of phenotype markers for mesenchymal stem and/or chondroprogenitor cells, and the potential to differentiate into chondrocytes, adipocytes, and osteoblasts. After the intra-articular injection of the cell therapy, clinical follow-up was performed using the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD) and computed tomography (CT) images. No serious adverse events related to the cell therapy injection were observed during the 12-month follow-up period. It was found that autologous chondroprogenitors reduced arthralgia, promoted stabilization of mandibular function and condylar volume, and regeneration of condylar tissues. This study demonstrates that chondroprogenitor cells from the nasal septum may be a promise strategy for the treatment of temporomandibular degenerative joint disease that do not respond to other conservative therapies.


Assuntos
Côndilo Mandibular , Septo Nasal , Humanos , Septo Nasal/cirurgia , Feminino , Masculino , Adulto , Côndilo Mandibular/patologia , Transtornos da Articulação Temporomandibular/patologia , Transtornos da Articulação Temporomandibular/terapia , Cirurgia Ortognática/métodos , Condrócitos/metabolismo , Diferenciação Celular , Reabsorção Óssea , Células-Tronco Mesenquimais/metabolismo
12.
Diabetol Metab Syndr ; 16(1): 114, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38790009

RESUMO

BACKGROUND: Mesenchymal stem cell infusion and vitamin D supplementation may have immunomodulatory actions that could prolong the preservation of residual insulin secretion in patients with type 1 diabetes (T1D). Intervention with these agents after onset of T1D could favor the development of a remission phase, with potential clinical impact. We aimed to compare the presence of clinical remission (CR), glycemic control and daily insulin requirement at 6, 12, 18, 24 and 36 months after the diagnosis of T1D using IDAA1c in patients who received therapy with adipose tissue-derived mesenchymal stem cell (ASC) infusion and vitamin D supplementation and a control group. METHODS: This retrospective cohort study analyzed data from the medical records of patients with T1D diagnosed between 15 and 40 years. Partial CR was defined as an IDAA1c index < 9. Patients in the intervention group received an infusion of adipose tissued-derived mesenchymal stem cells (ASCs) within 3 months after diagnosis and supplementation with 2000 IU of cholecalciferol for 1 year, started on the day following the infusion. Partial CR was also determined using the ISPAD criteria, to assess its agreement with IDAA1c. RESULTS: A total of 28 patients were evaluated: 7 in the intervention group (group 1) and 21 in the control group (group 2). All patients in group 1 evolved with partial CR while only 46.7% of patients in group 2 had this outcome. Group 1 had a higher frequency of CR when evaluated with IDAA1c and ISPAD criteria. The mean duration of CR varied between the two criteria. Although HbA1c was similar between groups during follow-up, group 1 had a lower total daily insulin requirement (p < 0.005) at all time points. At 36 months, group 1 used 49% of the total daily insulin dose used by group 2 with similar glycemic control. CONCLUSION: The intervention with infusion of ASC + vitamin D supplementation was associated with partial CR at 6 months. Although there were no differences in CR established by the IDAA1c and ISPAD criteria after three years of follow-up, patients who underwent intervention had nearly the half insulin requirement of controls with conventional treatment, with similar glycemic control. TRIAL REGISTRATION: 37001514.0.0000.5257.

13.
J Appl Oral Sci ; 31: e20220489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37075387

RESUMO

OBJECTIVE: This study aimed to evaluate neuronal markers in stromal cells from human exfoliated deciduous teeth (SHED) and standardize the isolation and characterization of those cells. METHODOLOGY: Healthy primary teeth were collected from children. The cells were isolated by enzymatic digestion with collagenase. By following the International Society for Cell and Gene Therapy (ISCT) guidelines, SHED were characterized by flow cytometry and differentiated into osteogenic, adipogenic, and chondrogenic lineages. Colony-forming unit-fibroblasts (CFU-F) were performed to assess these cells' potential and efficiency. To clarify the neuronal potential of SHED, the expression of nestin and ßIII-tubulin were examined by immunofluorescence and SOX1, SOX2, GFAP, and doublecortin (DCX), nestin, CD56, and CD146 by flow cytometry. RESULTS: SHED showed mesenchymal stromal cells characteristics, such as adhesion to plastic, positive immunophenotypic profile for CD29, CD44, CD73, CD90, CD105, and CD166 markers, reduced expression for CD14, CD19, CD34, CD45, HLA-DR, and differentiation in three lineages confirmed by staining and gene expression for adipogenic differentiation. The average efficiency of colony formation was 16.69%. SHED expressed the neuronal markers nestin and ßIII-tubulin; the fluorescent signal intensity was significantly higher in ßIII-tubulin (p<0.0001) compared to nestin. Moreover, SHED expressed DCX, GFAP, nestin, SOX1, SOX2, CD56, CD146, and CD271. Therefore, SHED had a potential for neuronal lineage even without induction with culture medium and specific factors. CONCLUSION: SHEDs may be a new therapeutic strategy for regenerating and repairing neuronal cells and tissues.


Assuntos
Células-Tronco Mesenquimais , Tubulina (Proteína) , Criança , Humanos , Nestina/metabolismo , Tubulina (Proteína)/metabolismo , Antígeno CD146/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Dente Decíduo , Células Cultivadas , Células Estromais
14.
Polymers (Basel) ; 15(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38139880

RESUMO

Polylactic Acid (PLA) and Acrylonitrile-Butadiene-Styrene (ABS) are commonly used polymers in 3D printing for biomedical applications. Dental Pulp Stem Cells (DPSCs) are an accessible and proliferative source of stem cells with significant differentiation potential. Limited knowledge exists regarding the biocompatibility and genetic safety of ABS and PLA when in contact with DPSCs. This study aimed to investigate the impact of PLA and ABS on the adhesion, proliferation, osteogenic differentiation, genetic stability, proteomics, and immunophenotypic profile of DPSCs. A total of three groups, 1- DPSC-control, 2- DPSC+ABS, and 3- DPSC+PLA, were used in in vitro experiments to evaluate cell morphology, proliferation, differentiation capabilities, genetic stability, proteomics (secretome), and immunophenotypic profiles regarding the interaction between DPSCs and polymers. Both ABS and PLA supported the adhesion and proliferation of DPSCs without exhibiting significant cytotoxic effects and maintaining the capacity for osteogenic differentiation. Genetic stability, proteomics, and immunophenotypic profiles were unaltered in DPSCs post-contact with these polymers, highlighting their biosafety. Our findings suggest that ABS and PLA are biocompatible with DPSCs and demonstrate potential in dental or orthopedic applications; the choice of the polymer will depend on the properties required in treatment. These promising results stimulate further studies to explore the potential therapeutic applications in vivo using prototyped polymers in personalized medicine.

15.
Cells ; 11(8)2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35456019

RESUMO

Mesenchymal stromal cells (MSCs) have been used in immunosuppressive therapy due to their therapeutic effects, with the HLA-G molecule seeming to play a fundamental role. This work evaluated alternative MSC sources to bone marrow (BM), namely, umbilical cord tissue (UC), adipose tissue (AD) and dental pulp tissue (DP), and the influence of interferon-γ (IFN-γ) and hypoxia on the cultivation of these cells for use in immunosuppression therapies. Expression of costimulatory markers CD40, CD80 and CD86 and immunosuppressive molecules CD152 and HLA-G was analyzed. Lymphocyte inhibition assays were also performed. Sequencing of the HLA-G gene from exons 1 to 5 was performed using next-generation sequencing to determine the presence of alleles. UC-derived MSCs (UCMSCs) expressed higher CD152 and HLA-G1 under standard cultivation. UCMSCs and DP-derived MSCs (DPSCs) secreted similar levels of HLA-G5. All MSC sources inhibited the proliferation of peripheral blood mononuclear cells (PBMCs); growth under regular versus hypoxic conditions resulted in similar levels of inhibition. When IFN-γ was added, PBMC growth was inhibited to a lesser extent by UCMSCs. The HLA-G*01:04:01:01 allele appears to generate a more efficient MSC response in inhibiting lymphocyte proliferation. However, the strength of this conclusion was limited by the small sample size. UCMSCs are an excellent alternative to BM in immunosuppressive therapy: they express high concentrations of inhibitory molecules and can be cultivated without stimuli, which minimizes cost.


Assuntos
Antígenos HLA-G , Células-Tronco Mesenquimais , Proliferação de Células , Células Cultivadas , Antígenos HLA-G/genética , Antígenos HLA-G/metabolismo , Terapia de Imunossupressão , Interferon gama/metabolismo , Interferon gama/farmacologia , Leucócitos Mononucleares/metabolismo , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo
16.
Stem Cell Res Ther ; 13(1): 122, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313959

RESUMO

BACKGROUND: COVID-19 is a multisystem disease that presents acute and persistent symptoms, the postacute sequelae (PASC). Long-term symptoms may be due to consequences from organ or tissue injury caused by SARS-CoV-2, associated clotting or inflammatory processes during acute COVID-19. Various strategies are being chosen by clinicians to prevent severe cases of COVID-19; however, a single treatment would not be efficient in treating such a complex disease. Mesenchymal stromal cells (MSCs) are known for their immunomodulatory properties and regeneration ability; therefore, they are a promising tool for treating disorders involving immune dysregulation and extensive tissue damage, as is the case with COVID-19. This study aimed to assess the safety and explore the long-term efficacy of three intravenous doses of UC-MSCs (umbilical cord MSCs) as an adjunctive therapy in the recovery and postacute sequelae reduction caused by COVID-19. To our knowledge, this is one of the few reports that presents the longest follow-up after MSC treatment in COVID-19 patients. METHODS: This was a phase I/II, prospective, single-center, randomized, double-blind, placebo-controlled clinical trial. Seventeen patients diagnosed with COVID-19 who require intensive care surveillance and invasive mechanical ventilation-critically ill patients-were included. The patient infusion was three doses of 5 × 105 cells/kg UC-MSCs, with a dosing interval of 48 h (n = 11) or placebo (n = 6). The evaluations consisted of a clinical assessment, viral load, laboratory testing, including blood count, serologic, biochemical, cell subpopulation, cytokines and CT scan. RESULTS: The results revealed that in the UC-MSC group, there was a reduction in the levels of ferritin, IL-6 and MCP1-CCL2 on the fourteen day. In the second month, a decrease in the levels of reactive C-protein, D-dimer and neutrophils and an increase in the numbers of TCD3, TCD4 and NK lymphocytes were observed. A decrease in extension of lung damage was observed at the fourth month. The improvement in all these parameters was maintained until the end of patient follow-up. CONCLUSIONS: UC-MSCs infusion is safe and can play an important role as an adjunctive therapy, both in the early stages, preventing severe complications and in the chronic phase with postacute sequelae reduction in critically ill COVID-19 patients. Trial registration Brazilian Registry of Clinical Trials (ReBEC), UTN code-U1111-1254-9819. Registered 31 October 2020-Retrospectively registered, https://ensaiosclinicos.gov.br/rg/RBR-3fz9yr.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Estudos Prospectivos , SARS-CoV-2
17.
Front Immunol ; 13: 1060438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685600

RESUMO

Purpose: Robust biomarkers that predict disease outcomes amongst COVID-19 patients are necessary for both patient triage and resource prioritisation. Numerous candidate biomarkers have been proposed for COVID-19. However, at present, there is no consensus on the best diagnostic approach to predict outcomes in infected patients. Moreover, it is not clear whether such tools would apply to other potentially pandemic pathogens and therefore of use as stockpile for future pandemic preparedness. Methods: We conducted a multi-cohort observational study to investigate the biology and the prognostic role of interferon alpha-inducible protein 27 (IFI27) in COVID-19 patients. Results: We show that IFI27 is expressed in the respiratory tract of COVID-19 patients and elevated IFI27 expression in the lower respiratory tract is associated with the presence of a high viral load. We further demonstrate that the systemic host response, as measured by blood IFI27 expression, is associated with COVID-19 infection. For clinical outcome prediction (e.g., respiratory failure), IFI27 expression displays a high sensitivity (0.95) and specificity (0.83), outperforming other known predictors of COVID-19 outcomes. Furthermore, IFI27 is upregulated in the blood of infected patients in response to other respiratory viruses. For example, in the pandemic H1N1/09 influenza virus infection, IFI27-like genes were highly upregulated in the blood samples of severely infected patients. Conclusion: These data suggest that prognostic biomarkers targeting the family of IFI27 genes could potentially supplement conventional diagnostic tools in future virus pandemics, independent of whether such pandemics are caused by a coronavirus, an influenza virus or another as yet-to-be discovered respiratory virus.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , COVID-19/diagnóstico , COVID-19/genética , SARS-CoV-2/genética , Influenza Humana/diagnóstico , Influenza Humana/epidemiologia , Influenza Humana/genética , Biomarcadores , Proteínas de Membrana/genética
18.
Exp Mol Pathol ; 90(2): 149-56, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21111728

RESUMO

Stem cell therapy has been considered a promise for damaged myocardial tissue. We have previously shown that S-nitroso-N-acetyl-D,L-penicillamine (SNAP) increases the expression of several muscular markers and VEGF in mesenchymal stem cells, indicating that transplantation of SNAP-treated cells could provide better functional outcomes. Here, we transplanted SNAP-treated adipose tissue-derived stem cells (ADSCs) in rat infarcted myocardium. After 30days, we observed a significant improvement of the ejection fraction in rats that received SNAP-treated ADSCs, compared with those that received untreated cells (p=0.008). Immunohistochemical reactions showed an increased expression of troponin T-C and von Willebrand factor, and organized vascular units in the infarcted area of tissue transplanted with treated ADSCs. SNAP exposure induced intracellular S-nitrosation, a decreased GSH/GSSG ratio, but did not increase cGMP levels. Collectively, these results indicate that SNAP alters the redox environment of ADSCs, possibly associated with a pre-differentiation state, which may improve cardiac function after transplantation.


Assuntos
Tecido Adiposo/citologia , Coração/fisiopatologia , Infarto do Miocárdio/terapia , Neovascularização Fisiológica/efeitos dos fármacos , S-Nitroso-N-Acetilpenicilamina/farmacologia , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Glutationa/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Coração/efeitos dos fármacos , Testes de Função Cardíaca/efeitos dos fármacos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Infarto do Miocárdio/fisiopatologia , Nitrosação/efeitos dos fármacos , Ratos , Ratos Wistar , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Volume Sistólico/efeitos dos fármacos , Troponina/metabolismo , Fator de von Willebrand/metabolismo
19.
Front Bioeng Biotechnol ; 9: 700862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34568295

RESUMO

Tissue engineering is a branch of regenerative medicine, which comprises the combination of biomaterials, cells and other bioactive molecules to regenerate tissues. Biomaterial scaffolds act as substrate and as physical support for cells and they can also reproduce the extracellular matrix cues. Although tissue engineering applications in cellular therapy tend to focus on the use of specialized cells from particular tissues or stem cells, little attention has been paid to endothelial progenitors, an important cell type in tissue regeneration. We combined 3D printed poly(lactic acid) scaffolds comprising two different pore sizes with human adipose-derived stromal cells (hASCs) and expanded CD133+ cells to evaluate how these two cell types respond to the different architectures. hASCs represent an ideal source of cells for tissue engineering applications due to their low immunogenicity, paracrine activity and ability to differentiate. Expanded CD133+ cells were isolated from umbilical cord blood and represent a source of endothelial-like cells with angiogenic potential. Fluorescence microscopy and scanning electron microscopy showed that both cell types were able to adhere to the scaffolds and maintain their characteristic morphologies. The porous PLA scaffolds stimulated cell cycle progression of hASCs but led to an arrest in the G1 phase and reduced proliferation of expanded CD133+ cells. Also, while hASCs maintained their undifferentiated profile after 7 days of culture on the scaffolds, expanded CD133+ cells presented a reduction of the von Willebrand factor (vWF), which affected the cells' angiogenic potential. We did not observe changes in cell behavior for any of the parameters analyzed between the scaffolds with different pore sizes, but the 3D environment created by the scaffolds had different effects on the cell types tested. Unlike the extensively used mesenchymal stem cell types, the 3D PLA scaffolds led to opposite behaviors of the expanded CD133+ cells in terms of cytotoxicity, proliferation and immunophenotype. The results obtained reinforce the importance of studying how different cell types respond to 3D culture systems when considering the scaffold approach for tissue engineering.

20.
Curr Stem Cell Res Ther ; 16(5): 495-506, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33588741

RESUMO

BACKGROUND: Mesenchymal Stromal Cells (MSC) have the potential for self-renewal and differentiation in different tissues, characteristics that encourage their use in regenerative medicine. Dental tissue MSCs are easy to collect, have the same embryonic origin as neurons and have neuronal markers that allow their use in treating neurodegenerative diseases. Human Exfoliated Deciduous teeth (SHED)-derived stromal cells are considered immature and present positive expression of pluripotency and neuronal markers. Studies have shown that after the induction of neuronal differentiation in vitro, SHED increased the expression of neuronal markers, such as ßIIItubulin, nestin, GFAP, NeuN, and NFM, demonstrating the potential use of these cells in preclinical studies. The results of this review reflect the consensus that in diseases such as spinal cord injury, cerebral ischaemia, and Alzheimer's and Parkinson's disease, SHED could function in the suppression of the inflammatory response, neuroprotection, and neuronal replacement. CONCLUSION: For these cells to be used in large-scale clinical trials, standardization of the isolation techniques and theneuronal induction medium are necessary. The potential of SHED to induce neuronal differentiation is evident, demonstrating that this resource is promising and shows great potential for use in future preclinical and clinical trials of neurodegenerative diseases.


Assuntos
Polpa Dentária , Células-Tronco Mesenquimais , Neurônios , Diferenciação Celular , Células Cultivadas , Polpa Dentária/citologia , Humanos , Dente Decíduo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA