Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cancer Metastasis Rev ; 41(2): 447-458, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35419769

RESUMO

Reprogrammed metabolism and high energy demand are well-established properties of cancer cells that enable tumor growth. Glycolysis is a primary metabolic pathway that supplies this increased energy demand, leading to a high rate of glycolytic flux and a greater dependence on glucose in tumor cells. Finding safe and effective means to control glycolytic flux and curb cancer cell proliferation has gained increasing interest in recent years. A critical step in glycolysis is controlled by the enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), which converts fructose 6-phosphate (F6P) to fructose 2,6-bisphosphate (F2,6BP). F2,6BP allosterically activates the rate-limiting step of glycolysis catalyzed by PFK1 enzyme. PFKFB3 is often overexpressed in many human cancers including pancreatic, colon, prostate, and breast cancer. Hence, PFKFB3 has gained increased interest as a compelling therapeutic target. In this review, we summarize and discuss the current knowledge of PFKFB3 functions, its role in cellular pathways and cancer development, its transcriptional and post-translational activity regulation, and the multiple pharmacologic inhibitors that have been used to block PFKFB3 activity in cancer cells. While much remains to be learned, PFKFB3 continues to hold great promise as an important therapeutic target either as a single agent or in combination with current interventions for breast and other cancers.


Assuntos
Neoplasias da Mama , Fosfofrutoquinase-2 , Frutose , Glucose/metabolismo , Glicólise/fisiologia , Humanos , Masculino , Fosfofrutoquinase-2/metabolismo
2.
Cancer Metastasis Rev ; 39(3): 903-918, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32776157

RESUMO

Total metastatic burden is the primary cause of death for many cancer patients. While the process of metastasis has been studied widely, much remains to be understood. Moreover, few agents have been developed that specifically target the major steps of the metastatic cascade. Many individual genes and pathways have been implicated in metastasis but a holistic view of how these interact and cooperate to regulate and execute the process remains somewhat rudimentary. It is unclear whether all of the signaling features that regulate and execute metastasis are yet fully understood. Novel features of a complex system such as metastasis can often be discovered by taking a systems-based approach. We introduce the concepts of systems modeling and define some of the central challenges facing the application of a multidisciplinary systems-based approach to understanding metastasis and finding actionable targets therein. These challenges include appreciating the unique properties of the high-dimensional omics data often used for modeling, limitations in knowledge of the system (metastasis), tumor heterogeneity and sampling bias, and some of the issues key to understanding critical features of molecular signaling in the context of metastasis. We also provide a brief introduction to integrative modeling that focuses on both the nodes and edges of molecular signaling networks. Finally, we offer some observations on future directions as they relate to developing a systems-based model of the metastatic cascade.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Biologia de Sistemas/métodos , Progressão da Doença , Humanos , Metástase Neoplásica , Neoplasias/genética , Transdução de Sinais
3.
Mol Pharmacol ; 94(2): 812-822, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29739819

RESUMO

Estrogen therapy was used to treat advanced breast cancer in postmenopausal women for decades until the introduction of tamoxifen. Resistance to long-term estrogen deprivation (LTED) with tamoxifen and aromatase inhibitors used as a treatment of breast cancer inevitably occurs, but unexpectedly low-dose estrogen can cause regression of breast cancer and increase disease-free survival in some patients. This therapeutic effect is attributed to estrogen-induced apoptosis in LTED breast cancer. Here, we describe modulation of the estrogen receptor (ER) liganded with antiestrogens (endoxifen and 4-hydroxytamoxifen) and an estrogenic triphenylethylene (TPE), ethoxytriphenylethylene (EtOXTPE), on estrogen-induced apoptosis in LTED breast cancer cells. Our results show that the angular TPE estrogen (EtOXTPE) is able to induce the ER-mediated apoptosis only at a later time compared with planar estradiol in these cells. Using real-time polymerase chain reaction, chromatin immunoprecipitation, western blotting, molecular modeling, and X-ray crystallography techniques, we report novel conformations of the ER complex with an angular estrogen EtOXTPE and endoxifen. We propose that alteration of the conformation of the ER complexes, with changes in coactivator binding, governs estrogen-induced apoptosis through the protein kinase regulated by RNA-like endoplasmic reticulum kinase sensor system to trigger an unfolded protein response.


Assuntos
Neoplasias da Mama/metabolismo , Receptores de Estrogênio/metabolismo , Estilbenos/farmacologia , Tamoxifeno/análogos & derivados , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Receptores de Estrogênio/genética , Estilbenos/química , Tamoxifeno/química , Tamoxifeno/farmacologia
4.
Breast Cancer Res Treat ; 150(2): 265-78, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25721606

RESUMO

Estrogen (E2)-induced transcription requires coordinated recruitment of estrogen receptor α (ER) and multiple factors at the promoter of activated genes. However, the precise mechanism by which this complex stimulates the RNA polymerase II activity required to execute transcription is largely unresolved. We investigated the role of bromodomain (BRD) containing bromodomain and extra-terminal (BET) proteins, in E2-induced growth and gene activation. JQ1, a specific BET protein inhibitor, was used to block BET protein function in two different ER-positive breast cancer cell lines (MCF7 and T47D). Real-time PCR and ChIP assays were used to measure RNA expression and to detect recruitment of various factors on the genes, respectively. Protein levels were measured by Western blotting. JQ1 suppressed E2-induced growth and transcription in both MCF7 and T47D cells. The combination of E2 and JQ1 down-regulated the levels of ER protein in MCF7 cells but the loss of ER was not responsible for JQ1-mediated inhibition of E2 signaling. JQ1 did not disrupt E2-induced recruitment of ER and co-activator (SRC3) at the E2-responsive DNA elements. The E2-induced increase in histone acetylation was also not altered by JQ1. However, JQ1 blocked the E2-induced transition of RNA polymerase II from initiation to elongation by stalling it at the promoter region of the responsive genes upstream of the transcription start site. This study establishes BET proteins as the key mediators of E2-induced transcriptional activation. This adds another layer of complexity to the regulation of estrogen-induced gene activation that can potentially be targeted for therapeutic intervention.


Assuntos
Antineoplásicos/farmacologia , Azepinas/farmacologia , Estradiol/fisiologia , RNA Polimerase II/metabolismo , Transcrição Gênica , Triazóis/farmacologia , Neoplasias da Mama , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
5.
Breast Cancer Res Treat ; 150(2): 347-61, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25773930

RESUMO

The gene for Pregnancy Up-regulated Non-ubiquitous Calmodulin Kinase (Pnck), a novel calmodulin kinase, is expressed in roughly one-third of human breast tumors, but not in adjoining normal tissues. Pnck alters EGFR stability and function, prompting this study to determine if Pnck expression has implications for HER-2 function and HER-2-directed therapy. The frequency of Pnck expression in HER-2-amplified breast cancer was examined by immunohistochemistry, and the impact of Pnck expression in the presence of HER-2 amplification on cancer cell proliferation, clonogenicity, cell-cycle progression, and Trastuzumab sensitivity was examined in vitro by transfection of cells with Pnck. Cell signaling was probed by Western blot analysis and shRNA-mediated PTEN knockdown. Over 30 % of HER-2 amplified tumors were found to express Pnck. Expression of Pnck in SkBr3 cells resulted in increased proliferation, clonal growth, cell-cycle progression, and Trastuzumab resistance. Pnck expression increases Hsp27 expression, Trastuzumab partial agonist activity on HER-2 Y1248 phosphorylation, and suppressed extracellular signal-regulated kinase (ERK1/2) activity. Knockdown of endogenous PTEN upregulated ERK1/2 activity, inhibited cellular proliferation, and partially sensitized Pnck/SKBr3 cells to Trastuzumab treatment. Increased proliferation of the Pnck/SKBr3 cells was observed following expression of protein phosphatase active and lipid phosphatase dead PTEN mutant but not the total phosphatase dead PTEN mutant. Co-overexpression of HER-2 and Pnck results in enhanced tumor cell proliferation and Trastuzumab resistance that is paradoxically dependent on PTEN protein phosphatase activity. This suggests that Pnck may be a marker of Trastuzumab resistance and possibly a therapeutic target.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , PTEN Fosfo-Hidrolase/fisiologia , Receptor ErbB-2/genética , Trastuzumab/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Resistencia a Medicamentos Antineoplásicos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Amplificação de Genes , Expressão Gênica , Humanos , Neuregulina-1/fisiologia , Pontos de Checagem da Fase S do Ciclo Celular
6.
Mol Pharmacol ; 85(5): 789-99, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24608856

RESUMO

Development of acquired antihormone resistance exposes a vulnerability in breast cancer: estrogen-induced apoptosis. Triphenylethylenes (TPEs), which are structurally similar to 4-hydroxytamoxifen (4OHT), were used for mechanistic studies of estrogen-induced apoptosis. These TPEs all stimulate growth in MCF-7 cells, but unlike the planar estrogens they block estrogen-induced apoptosis in the long-term estrogen-deprived MCF7:5C cells. To define the conformation of the TPE:estrogen receptor (ER) complex, we employed a previously validated assay using the induction of transforming growth factor α (TGFα) mRNA in situ in MDA-MB 231 cells stably transfected with wild-type ER (MC2) or D351G ER mutant (JM6). The assays discriminate ligand fit in the ER based on the extremes of published crystallography of planar estrogens or TPE antiestrogens. We classified the conformation of planar estrogens or angular TPE complexes as "estrogen-like" or "antiestrogen-like" complexes, respectively. The TPE:ER complexes did not readily recruit the coactivator steroid receptor coactivator-3 (SRC3) or ER to the PS2 promoter in MCF-7 and MCF7:5C cells, and molecular modeling showed that they prefer to bind to the ER in an antagonistic fashion, i.e., helix 12 not sealing the ligand binding domain (LBD) effectively, and therefore reduce critical SRC3 binding. The fully activated ER complex with helix 12 sealing the LBD is suggested to be the appropriate trigger to initiate rapid estrogen-induced apoptosis.


Assuntos
Apoptose/fisiologia , Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/induzido quimicamente , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Receptor alfa de Estrogênio/agonistas , Estrogênios/química , Estrogênios/farmacologia , Feminino , Humanos , Células MCF-7 , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Estilbenos/química , Estilbenos/metabolismo , Estilbenos/farmacologia
7.
Breast Cancer Res Treat ; 143(1): 113-24, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24309997

RESUMO

Endocrine therapy resistance in estrogen receptor alpha positive (ERα+) breast cancers remains a major obstacle for maintaining efficacy of targeted therapies. We investigated the significance and the mechanisms involved in cMYC over-expression in a MCF7 derived panel of ERα+ breast cancer cells which can proliferate in the absence of estrogen with different sensitivities to anti-hormone therapies. We show that all the resistant cell lines tested over-express cMYC as compared to parental MCF7 cells and its inhibition lead to the differential blocking of estrogen-independent proliferation in resistant cells. Further investigation of the resistant cell line, MCF7:5C, suggested transcriptional de-regulation of cMYC gene was responsible for its over-expression. Chromatin immuno-precipitation assay revealed markedly higher recruitment of phosphorylated serine-2 carboxy-terminal domain (CTD) of RNA polymerase-II at the proximal promoter of cMYC gene, which is responsible for transcriptional elongation of the cMYC RNA. The level of CDK9, a factor responsible for the phosphorylation of serine-2 of RNA polymerase II CTD, was found to be elevated in all the resistant cell lines. Pharmacological inhibition of CDK9 not only reduced the transcripts and the protein levels of cMYC in MCF7:5C cells but also selectively inhibited the estrogen-independent growth of all the resistant cell lines. This study describes the up-stream molecular events involved in the transcriptional over-expression of cMYC gene in breast cancer cells proliferating estrogen-independently and identifies CDK9 as a potential novel drug target for therapeutic intervention in endocrine-resistant breast cancers.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Quinase 9 Dependente de Ciclina/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-myc/genética , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Células MCF-7 , Modelos Biológicos , Regiões Promotoras Genéticas , Ligação Proteica , RNA Polimerase II/metabolismo , Transcrição Gênica
8.
Front Endocrinol (Lausanne) ; 14: 1083048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909339

RESUMO

Heterogeneity is a complex feature of cells and tissues with many interacting components. Depending on the nature of the research context, interacting features of cellular, drug response, genetic, molecular, spatial, temporal, and vascular heterogeneity may be present. We describe the various forms of heterogeneity with examples of their interactions and how they play a role in affecting cellular phenotype and drug responses in breast cancer. While cellular heterogeneity may be the most widely described and invoked, many forms of heterogeneity are evident within the tumor microenvironment and affect responses to the endocrine and cytotoxic drugs widely used in standard clinical care. Drug response heterogeneity is a critical determinant of clinical response and curative potential and also is multifaceted when encountered. The interactive nature of some forms of heterogeneity is readily apparent. For example, the process of metastasis has the properties of both temporal and spatial heterogeneity within the host, whereas each individual metastatic deposit may exhibit cellular, genetic, molecular, and vascular heterogeneity. This review describes the many forms of heterogeneity, their integrated activities, and offers some insights into how heterogeneity may be understood and studied in the future.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Microambiente Tumoral
9.
Cells ; 12(6)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36980301

RESUMO

Although multifactorial in origin, one of the most impactful consequences of social isolation is an increase in breast cancer mortality. How this happens is unknown, but many studies have shown that social isolation increases circulating inflammatory cytokines and impairs mitochondrial metabolism. Using a preclinical Sprague Dawley rat model of estrogen receptor-positive breast cancer, we investigated whether social isolation impairs the response to tamoxifen therapy and increases the risk of tumors emerging from dormancy, and thus their recurrence. We also studied which signaling pathways in the mammary glands may be affected by social isolation in tamoxifen treated rats, and whether an anti-inflammatory herbal mixture blocks the effects of social isolation. Social isolation increased the risk of dormant mammary tumor recurrence after tamoxifen therapy. The elevated recurrence risk was associated with changes in multiple signaling pathways including an upregulation of IL6/JAK/STAT3 signaling in the mammary glands and tumors and suppression of the mitochondrial oxidative phosphorylation (OXPHOS) pathway. In addition, social isolation increased the expression of receptor for advanced glycation end-products (RAGE), consistent with impaired insulin sensitivity and weight gain linked to social isolation. In socially isolated animals, the herbal product inhibited IL6/JAK/STAT3 signaling, upregulated OXPHOS signaling, suppressed the expression of RAGE ligands S100a8 and S100a9, and prevented the increase in recurrence of dormant mammary tumors. Increased breast cancer mortality among socially isolated survivors may be most effectively prevented by focusing on the period following the completion of hormone therapy using interventions that simultaneously target several different pathways including inflammatory and mitochondrial metabolism pathways.


Assuntos
Interleucina-6 , Neoplasias Mamárias Animais , Ratos , Animais , Ratos Sprague-Dawley , Receptor para Produtos Finais de Glicação Avançada , Recidiva Local de Neoplasia/tratamento farmacológico , Tamoxifeno/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Isolamento Social , Redes e Vias Metabólicas
10.
Am J Physiol Cell Physiol ; 300(5): C1139-54, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325639

RESUMO

We have recently described a novel role for pregnancy-upregulated non-ubiquitous calmodulin kinase (Pnck) in the induction of ligand-independent epidermal growth factor receptor (EGFR) degradation (Deb TB, Coticchia CM, Barndt R, Zuo H, Dickson RB, and Johnson MD. Am J Physiol Cell Physiol 295: C365-C377, 2008). In the current communication, we explore the probable mechanism by which Pnck induces ligand-independent EGFR degradation. Pnck-induced EGFR degradation is calcium/calmodulin independent and is regulated by cell density, with the highest EGFR degradation observed at low cell density. Pnck is a novel heat shock protein 90 (Hsp90) client protein that can be co-immunoprecipitated with Hsp90. Treatment of Pnck-overexpressing cells with the pharmacologic Hsp90 inhibitor geldanamycin results in enhanced EGFR degradation, and destruction of Pnck. In cells in which Pnck is inducing EGFR degradation, we observed that Hsp90 exhibits reduced electrophoretic mobility, and through mass spectrometric analysis of immunopurified Hsp90 protein we demonstrated enhanced phosphorylation at threonine 89 and 616 (in both Hsp90-α and -ß) and serine 391 (in Hsp90-α). Kinase-active Pnck protein is degraded by the proteasome, concurrent with EGFR degradation. A Pnck mutant (T171A) protein with suppressed kinase activity induced EGFR degradation to essentially the same level as wild-type (WT) Pnck, suggesting that Pnck kinase activity is not required for the induction of EGFR degradation. Although EGFR is degraded, overexpression of WT Pnck paradoxically promoted cellular proliferation, whereas cells expressing mutant Pnck (T171A) were growth inhibited. WT Pnck promoted S to G(2) transition, but cells expressing the mutant exhibited higher residency time in S phase. Basal MAP kinase activity was inhibited by WT Pnck but not by mutant T171A Pnck protein. Cyclin-dependent kinase (Cdk) inhibitor p21/Cip-1/Waf-1 was transcriptionally suppressed downstream to MAP kinase inhibition by WT Pnck, but not the mutant protein. Collectively, these data suggest that 1) Pnck induces ligand-independent EGFR degradation most likely through perturbation of Hsp90 chaperone activity due to Hsp90 phosphorylation, 2) EGFR degradation is coupled to proteasomal degradation of Pnck, and 3) modulation of basal MAP kinase activity, p21/Cip-1/Waf-1 expression, and cellular growth by Pnck is independent of Pnck-induced ligand-independent EGFR degradation.


Assuntos
Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Receptores ErbB/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Benzoquinonas/farmacologia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Lactamas Macrocíclicas/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Serina/metabolismo , Treonina/metabolismo
11.
Cancer Drug Resist ; 4: 762-783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532657

RESUMO

Breast cancers characterized by expression of estrogen receptor-alpha; ESR1) represent approximately 70% of all new cases and comprise the largest molecular subtype of this disease. Despite this high prevalence, the number of adequate experimental models of ER+ breast cancer is relatively limited. Nonetheless, these models have proved very useful in advancing understanding of how cells respond to and resist endocrine therapies, and how the ER acts as a transcription factor to regulate cell fate signaling. We discuss the primary experimental models of ER+ breast cancer including 2D and 3D cultures of established cell lines, cell line- and patient-derived xenografts, and chemically induced rodent models, with a consideration of their respective general strengths and limitations. What can and cannot be learned easily from these models is also discussed, and some observations on how these models may be used more effectively are provided. Overall, despite their limitations, the panel of models currently available has enabled major advances in the field, and these models remain central to the ability to study mechanisms of therapy action and resistance and for hypothesis testing that would otherwise be intractable or unethical in human subjects.

12.
Cancer Res ; 81(16): 4230-4241, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34135000

RESUMO

AIB1Δ4 is an N-terminally truncated isoform of the oncogene amplified in breast cancer 1 (AIB1) with increased expression in high-grade human ductal carcinoma in situ (DCIS). However, the role of AIB1Δ4 in DCIS malignant progression has not been defined. Here we CRISPR-engineered RNA splice junctions to produce normal and early-stage DCIS breast epithelial cells that expressed only AIB1Δ4. These cells showed enhanced motility and invasion in 3D cell culture. In zebrafish, AIB1Δ4-expressing cells enabled invasion of parental cells when present in a mixed population. In mouse xenografts, a subpopulation of AIB1Δ4 cells mixed with parental cells enhanced tumor growth, recurrence, and lung metastasis. AIB1Δ4 chromatin immunoprecipitation sequencing revealed enhanced binding to regions including peroxisome proliferator-activated receptor (PPAR) and glucocorticoid receptor (GR) genomic recognition sites. H3K27ac and H3K4me1 genomic engagement patterns revealed selective activation of breast cancer-specific enhancer sites by AIB1Δ4. AIB1Δ4 cells displayed upregulated inflammatory response genes and downregulated PPAR signaling gene expression patterns. In the presence of AIB1Δ4 enabler cells, parental cells increased NF-κB and WNT signaling. Cellular cross-talk was inhibited by the PPARγ agonist efatutazone but was enhanced by treatment with the GR agonist dexamethasone. In conclusion, expression of the AIB1Δ4-selective cistrome in a small subpopulation of cells triggers an "enabler" phenotype hallmarked by an invasive transcriptional program and collective malignant progression in a heterogeneous tumor population. SIGNIFICANCE: A minor subset of early-stage breast cancer cells expressing AIB1Δ4 enables bulk tumor cells to become invasive, suggesting that selective eradication of this population could impair breast cancer metastasis.


Assuntos
Coativador 3 de Receptor Nuclear/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Sistemas CRISPR-Cas , Técnicas de Cultura de Células em Três Dimensões , Linhagem Celular Tumoral , Dexametasona/química , Progressão da Doença , Impedância Elétrica , Elementos Facilitadores Genéticos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Coativador 3 de Receptor Nuclear/química , Fenótipo , Isoformas de Proteínas , Splicing de RNA , Receptores de Glucocorticoides/metabolismo , Transdução de Sinais , Tiazolidinedionas/farmacologia , Peixe-Zebra
13.
Breast Cancer Res Treat ; 117(2): 243-51, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18807177

RESUMO

Expression of the chemokine receptor CXCR4, a G protein-coupled receptor, and HER2, a receptor tyrosine kinase, strongly correlates with the aggressive and metastatic potential of breast cancer cells. We studied estrogen regulation of CXCR4 in estrogen receptor (ER)-positive MCF-7 breast cancer cells overexpressing HER2 (MCF7-HER2). Although estrogen evoked no change in CXCR4 mRNA levels, CXCR4 protein was significantly up-regulated after estrogen treatment of these cells, whereas estrogen had no effect on CXCR4 protein level in parental MCF7 cells that are low in HER2. Use of the CXCR4 specific inhibitor, AMD 3100, indicated that this increase in CXCR4 protein was partially responsible for the increase in estrogen-induced migration of these cells. The estrogen-induced increase in CXCR4 protein in MCF-7-HER2 cells was abrogated by the antiestrogen ICI 182780 and by gefitinib (Iressa; a phospho-tyrosine kinase inhibitor), indicating an ER-mediated effect and confirming involvement of receptor tyrosine kinases, respectively. Using specific pathway inhibitors, we show that the estrogen-induced increase in CXCR4 involves PI3K/AKT, MAPK and mTOR pathways. PI3K/AKT and MAPK pathways are known to result in the phosphorylation and functional inactivation of tuberin (TSC2) of tuberous sclerosis complex thereby negating its inhibitory effects on mTOR, which in turn stimulates the translational machinery. Small interfering RNA (siRNA) mediated knockdown of tuberin elevated the level of CXCR4 protein in MCF7-HER2 cells and also nullified further estrogen up-regulation of CXCR4. This study suggests a pivotal role of PI3 K, MAPK and mTOR pathways, via tuberin, in post-transcriptional control of CXCR4, initiated through estrogen-stimulated crosstalk between ER and HER2. Thus, post-transcriptional regulation of CXCR4 by estrogens acting through ER via kinase pathways may play a critical role in determining the metastatic potential of breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Processamento de Proteína Pós-Traducional/fisiologia , Receptor ErbB-2/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais/fisiologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Moduladores de Receptor Estrogênico/farmacologia , Estrogênios/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/análise , Receptor Cross-Talk/efeitos dos fármacos , Receptor Cross-Talk/fisiologia , Receptor ErbB-2/genética , Receptores CXCR4/biossíntese , Receptores CXCR4/genética , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
14.
Mol Cancer Res ; 17(4): 918-928, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30655322

RESUMO

Approximately 30% of aromatase-inhibitor-resistant, estrogen receptor-positive patients with breast cancer benefit from treatment with estrogen. This enigmatic estrogen action is not well understood and how it occurs remains elusive. Studies indicate that the unfolded protein response and apoptosis pathways play important roles in mediating estrogen-triggered apoptosis. Using MCF7:5C cells, which mimic aromatase inhibitor resistance, and are hypersensitive to estrogen as evident by induction of apoptosis, we define increased global protein translational load as the trigger for estrogen-induced apoptosis. The protein kinase RNA-like endoplasmic reticulum kinase pathway was activated followed by increased phosphorylation of eukaryotic initiation factor-2 alpha (eIF2α). These actions block global protein translation but preferentially allow high expression of specific transcription factors, such as activating transcription factor 4 and C/EBP homologous protein that facilitate apoptosis. Notably, we recapitulated this phenotype of MCF7:5C in two other endocrine therapy-resistant cell lines (MCF7/LCC9 and T47D:A18/4-OHT) by increasing the levels of phospho-eIF2α using salubrinal to pharmacologically inhibit the enzymes responsible for dephosphorylation of eIF2α, GADD34, and CReP. RNAi-mediated ablation of these genes induced apoptosis that used the same signaling as salubrinal treatment. Moreover, combining 4-hydroxy tamoxifen with salubrinal enhanced apoptotic potency. IMPLICATIONS: These results not only elucidate the mechanism of estrogen-induced apoptosis but also identify a drugable target for potential therapeutic intervention that can mimic the beneficial effect of estrogen in some breast cancers.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Estradiol/farmacologia , Fatores de Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Cinamatos/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Células MCF-7 , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Tioureia/análogos & derivados , Tioureia/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Resposta a Proteínas não Dobradas/genética , Regulação para Cima/efeitos dos fármacos , eIF-2 Quinase/metabolismo
15.
Adv Exp Med Biol ; 630: 206-19, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18637493

RESUMO

The majority of breast cancers are estrogen receptor (ER) positive and depend on estrogen for growth. Therefore, blocking estrogen mediated actions remains the strategy of choice for the treatment and prevention of breast cancer. The selective estrogen receptor modulators (SERMs) are molecules that block estrogen action in breast cancer, but can still potentially maintain the beneficial effects of estrogen in other tissues, such as bone and cardiovascular system. Tamoxifen, the prototypical drug of this class has been used extensively for the past 30 years to treat and prevent breast cancer. The target of drug action, ERs alpha and beta, are the two receptors which are responsible for the first step in estrogen and SERM action. The SERM binds to the ERs and confers a unique conformation to the complex. In a target site which expresses antiestrogenic actions, the conformation of the ER is distinctly different from estrogen bound ER. The complex recruits protein partners called corepressors to prevent the transcription of estrogen responsive genes. In contrast, at a predominantly estrogenic site coactivators for estrogen action are recruited. Unfortunately at an antiestrogenic site such as breast cancer, long term SERM therapy causes the development of acquired resistance. The breast and endometrial tumor cells selectively become SERM stimulated. Overexpression of receptor tyrosine kinases, HER-2, EGFR and IGFR and the signaling cascades following their activation are frequently involved in SERM resistant breast cancers. The aberrantly activated PI3K/AKT and MAPK pathways and their cross talk with the genomic components of the ER action are implicated in SERM resistance. Other down stream factors of HER-2 and EGFR signaling, such as PI3K/AKT, MAPK or mTOR pathways has also been found to be involved in resistance mechanisms. Blocking the actions of HER-2 and EGFR represent a rational strategy for treating SERM resistant phenotypes and may in fact restore the sensitivity to the SERMs. Another approach exploits the discovery that low dose estrogen will induce apoptosis in the SERM resistant breast cancers. Numerous clinical studies are addressing these issues.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/fisiologia , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Antineoplásicos Hormonais/farmacologia , Antineoplásicos Hormonais/uso terapêutico , Apoptose/efeitos dos fármacos , Receptores ErbB/fisiologia , Feminino , Humanos , Modelos Biológicos , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/fisiologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia , Resultado do Tratamento
16.
Endocrinology ; 148(8): 3685-93, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17463059

RESUMO

Estrogens are essential for fertility and also have important effects on regulation of adiposity and the euglycemic state. We report here that lipin1, a candidate gene for lipodystrophy and obesity that is a phosphatidic acid phosphatase critical in regulation of cellular levels of diacylglycerol and triacylglycerol and a key regulator of lipid utilization, is rapidly and robustly down-regulated in the uterus by estradiol via the estrogen receptor. Lipin1 is expressed predominantly in the uterine luminal and glandular epithelium, and during the estrous cycle, lipin1 is lowest when blood levels of estrogen are highest. Lipin1 is expressed throughout all cells in the liver of ovariectomized female mice, and a sustained down-regulation is observed at the mRNA, protein and immunohistochemical levels after estrogen administration. Because the coupling of proper energy use and availability is central to reproduction, we also investigated expression of lipin1 in the uterus and liver of several mouse models of diabetes. Nonobese diabetic (NOD) mice, which have high blood levels of estrogen and impaired fertility, were severely deficient in lipin1 in the uterus and liver, which, interestingly, could be restored by insulin treatment. By contrast, nonobese diabetic/severe combined immunodeficient (NOD-SCID) mice, which do not develop diabetes, showed normal levels of lipin1. Our findings of lipin1 regulation by estrogen in two key target organs suggest a new role for this lipid-regulating phosphatase not only in central metabolic regulation but also in uterine function and reproductive biology. Estrogen regulation of lipin1 may provide a mechanistic link between estrogens, lipid metabolism, and lipid signaling.


Assuntos
Diabetes Mellitus Tipo 1/fisiopatologia , Estradiol/sangue , Infertilidade Feminina/fisiopatologia , Fígado/fisiologia , Proteínas Nucleares/metabolismo , Útero/fisiologia , Animais , Diabetes Mellitus Tipo 1/metabolismo , Regulação para Baixo/fisiologia , Epitélio/fisiologia , Ciclo Estral/fisiologia , Feminino , Fertilidade/fisiologia , Expressão Gênica/fisiologia , Imuno-Histoquímica , Infertilidade Feminina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas Nucleares/genética , Fosfatidato Fosfatase
17.
Endocrinology ; 147(8): 3843-50, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16690804

RESUMO

Estrogens and androgens influence many properties of breast cancer cells; hence, regulation of local estrogen and androgen levels by enzymes involved in steroid hormone biosynthesis and metabolism would impact signaling by these hormones in breast cancer cells. In this study, we show that the UDP-glucuronosyltransferase (UGT) enzyme UGT2B15, a member of the UGT family of phase II enzymes involved in the glucuronidation of steroids and xenobiotics, is a novel, estrogen-regulated gene in estrogen receptor (ER)-positive human breast cancer cells (MCF-7, BT474, T47D, and ZR-75). UGT2B15 is the only UGT2B enzyme up-regulated by estrogen, and marked estradiol stimulation of UGT2B15 mRNA levels is observed, in a time- and dose-dependent manner. UGT2B15 stimulation by estradiol is blocked by the antiestrogen ICI182,780, but not by the translational inhibitor cycloheximide, indicating that UGT2B15 is likely a primary transcriptional response mediated through the ER. UGT2B15 up-regulation is also evoked by other estrogens (propylpyrazoletriol, genistein) and by the androgen 5alpha-dihydrotestosterone working through the ER, but not by other steroid hormone receptor ligands. Western blot and immunocytochemical analyses with several UGT2B-specific antibodies we have designed and steroid glucuronidation assays indicate a large increase in both cellular UGT2B15 protein and enzyme activity after estrogen treatment. Due to the important role of UGT enzymes in forming conjugates between steroids and glucuronic acid, thereby inactivating them and targeting them for removal, the estrogen-induced up-regulation of UGT2B15 might have a significant moderating effect on estrogen and androgen concentrations, thereby reducing their signaling in breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Estradiol/metabolismo , Glucuronosiltransferase/genética , Glucuronosiltransferase/metabolismo , Receptores de Estrogênio/metabolismo , Androgênios/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cicloeximida/farmacologia , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Fulvestranto , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Inibidores da Síntese de Proteínas/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
18.
Steroids ; 90: 60-70, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24929046

RESUMO

Antihormone therapy remains the gold standard of care in the treatment of estrogen receptor (ER) positive breast cancer. However, development of acquired long term antihormone resistance exposes a vulnerability to estrogen that induces apoptosis. Laboratory and clinical studies indicate that successful therapy with estrogens is dependent on the duration of estrogen withdrawal and menopausal status of a woman. Interrogation of estradiol (E2) induced apoptosis using molecular studies indicate treatment of long term estrogen deprived MCF-7 breast cancer cells with estrogen causes an endoplasmic reticulum stress response that induces an unfolded protein response signal to inhibit protein translation. E2 binds to the ER and mediates apoptosis through the classical genomic pathway. Furthermore, the induction of apoptosis by estrogens is dependent on the conformation of the estrogen-ER complex. In this review, we explore the mechanism and the processes involved in the paradox of estrogen induced apoptosis and the new selectivity of estrogen action on different cell populations that is correctly been deciphered for clinical practice.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Estradiol/uso terapêutico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Receptores de Estrogênio/metabolismo
19.
Cell Cycle ; 13(6): 961-73, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24552815

RESUMO

Pregnancy upregulated non-ubiquitous calmodulin kinase (Pnck), a novel calmodulin kinase, is significantly overexpressed in breast and renal cancers. We present evidence that at high cell density, overexpression of Pnck in HEK 293 cells inhibits serum-induced extracellular signal-regulated kinase (ERK1/ERK2) activation. ERK1/2 inhibition is calcium-dependent and Pnck kinase activity is required for ERK1/2 inhibition, since expression of a kinase-dead (K44A) and a catalytic loop phosphorylation mutant (T171A) Pnck protein is unable to inhibit ERK1/2 activity. Ras is constitutively active at high cell density, and Pnck does not alter Ras activation, suggesting that Pnck inhibition of ERK1/2 activity is independent of Ras activity. Pnck inhibition of serum-induced ERK1/2 activity is lost in cells in which phosphatase and tensin homolog (PTEN) is suppressed, suggesting that Pnck inhibition of ERK1/2 activity is mediated by PTEN. Overexpression of protein phosphatase-active but lipid phosphatase-dead PTEN protein inhibits ERK1/2 activity in control cells and enhances Pnck-mediated ERK1/2 inhibition, suggesting that Pnck increases availability of protein phosphatase active PTEN for ERK1/2 inhibition. Pnck is a stress-responsive kinase; however, serum-induced p38 MAP kinase activity is also downregulated by Pnck in a Pnck kinase- and PTEN-dependent manner, similar to ERK1/2 inhibition. Pnck overexpression increases proliferation, which is inhibited by PTEN knockdown, implying that PTEN acts as a paradoxical promoter of proliferation in ERK1/2 and p38 MAP kinase phosphorylation-inhibited, Pnck-overexpressing cells. Overall, these data reveal a novel function of Pnck in the regulation of ERK1/2 and p38 MAP kinase activity and cell proliferation, which is mediated by paradoxical PTEN functions. The possible biological implications of these data are discussed.


Assuntos
Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/genética , Proliferação de Células , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Anisomicina/farmacologia , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Ativação Enzimática , Ativadores de Enzimas/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Imidazóis/farmacologia , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Fosforilação , Piridinas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas ras/metabolismo
20.
Horm Mol Biol Clin Investig ; 5(1): 27-34, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21660224

RESUMO

BACKGROUND: Estrogens are classified as type I (planar) and type II (angular) based on their structures. In this study we have used triphenylethylenes (TPEs) compounds related to 4OHT to address the hypothesis that the conformation of the liganded estrogen receptor (ERα) may dictate the E2-induced apoptosis of the ER+ breast cancer cells. MATERIALS AND METHODS: ERα positive MCF7:5C cells were used to study the apoptosis induced by E2, 4OHT and TPEs. Growth and apoptosis assay were used to evaluate apoptosis and the ability to reverse the E2-induced apoptosis. ERα protein were measured by western blotting to investigate the destruction of ERα by TPEs in MCF7 cells. ChIP assay were performed to study the in-vivo recruitment of ERα and SRC3 at classical E2-responsive promoter TFF1 (PS2) by TPEs. Molecular modeling was used to predict the binding mode of the TPE to the ERα. RESULTS: TPEs were not only unable to induce efficient apoptosis in MCF7:5C cells but also reversed the E2-induced apoptosis similar to 4OHT. Furthermore, the TPEs and 4OHT did not reduce the ERα protein levels unlike E2. ChIP assay confirmed very weak recruitment of SRC3 despite modest recruitment of ERα in the presence of TPEs. Molecular modeling suggested the TPE would bind in antagonistic mode with the ERα. CONCLUSION: Our results advances the hypothesis that the TPE liganded ERα complex structurally resembles the 4OHT bound ERα and cannot efficiently recruit co-activator SRC3. As a result, the TPE complex cannot induce apoptosis of ER+ breast cancer cells although it may cause growth of the breast cancer cells. The conformation of the estrogen-ER complex differentially controls growth and apoptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA