Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Small ; : e2401426, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686686

RESUMO

The current high-capacity lithium-ion batteries (LIBs), reliant on flammable liquid electrolytes (LEs) and nickel-rich cathodes, are plagued by safety hazards, especially the risk of hazardous gas release stemming from internal side reactions. To address these safety concerns, an electron beam (E-beam)-induced gel polymer electrolyte (E-Gel) is introduced, employing dipentaerythritol hexaacrylate (DPH) as a bi-functional cross-linkable additive (CIA). The dual roles of DPH are exploited through a strategically designed E-beam irradiation process. Applying E-beam irradiation on the pre-cycled cells allows DPH to function as an additive during the initial cycle, establishing a protective layer on the surface of the anode and cathode and as a cross-linker during the E-beam irradiation step, forming a polymer framework. The prepared E-Gel with CIA has superior interfacial compatibility, facilitating lithium-ion diffusion at the electrode/E-Gel interface. The electrochemical assessment of 1.2 Ah pouch cells demonstrates that E-Gel substantially reduces gas release by 2.5 times compared to commercial LEs during the initial formation stage and ensures superior reversible capacity retention even after prolonged cycling at 55 °C. The research underscores the synergy of bifunctional CIA with E-beam technology, paving the way for large-scale production of safe, high-capacity, and commercially viable LIBs.

2.
Angew Chem Int Ed Engl ; 62(42): e202309852, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37635684

RESUMO

Conventional solid electrolyte frameworks typically consist of anions such as sulphur, oxygen, chlorine, and others, leading to inherent limitations in their properties. Despite the emergence of sulphide, oxide, and halide-based solid electrolytes for all-solid-state batteries, their utilization is hampered by issues, including the evolution of H2 S gas, the need for expensive elements, and poor contact. Here, we first introduce Prussian Blue analogue (PBA) open-framework structures as a solid electrolyte that demonstrates appreciable Na+ conductivity (>10-2 mS cm-1 ). We delve into the relationship between Na+ conductivity and the lattice parameter of N-coordinated transition metal, which is attributed to the reduced interaction between Na+ and the framework, corroborated by the distribution of relaxation times and density functional theory calculations. Among the five PBAs studied, Mn-PBA have exhibited the highest Na+ conductivity of 9.1×10-2 mS cm-1 . Feasibility tests have revealed that Mn-PBA have maintained a cycle retention of 95.1 % after 80cycles at 30 °C and a C-rate of 0.2C. Our investigation into the underlying mechanisms that play a significant role in governing the conductivity and kinetics of these materials contributes valuable insights for the development of alternative strategies to realize all-solid-state batteries.

3.
Small ; 18(24): e2201134, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35506524

RESUMO

All-solid-state thin-film batteries (ASSTFBs) are promising next-generation battery systems, but critical challenges such as low-energy-density remain. The low-energy-density might persist with low-voltage cathode material; hence, high-voltage cathode material development is required. While LiNi0.5 Mn1.5 O4 (LNM) has been considered a promising high-voltage cathode material. This study investigates the electrochemical properties of LNM thin films based on the correlation between the ordering of cations (Ni and Mn) and oxygen vacancies (VO ). The authors find that the cations' order changes from a disordered structure to an ordered structure with an increased oxygen flow rate during deposition. The optimized LNM fabricated using a 60:40 ratio of Ar to O2 exhibits the highest rate capability (321.4 mAh cm-3 @ 20 C) and most prolonged cycle performance for 500 cycles. The role of VO within the LNM structure and the lower activation energy of ordered LNM compared to disordered LNM through first-principles density functional theory calculations is elucidated. The superior electrochemical performance (276.9 mAh cm-3 @ 0.5 C) and high cyclic performance (at 93.9%, 500 cycles) are corroborated by demonstrating flexible ASSTFB cells using LiPON solid-state electrolyte and thin-film Li anode. This work paves the way for future research on the fabrication of high-performance flexible ASSTFBs.

4.
Nat Mater ; 18(3): 256-265, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718861

RESUMO

Reversible high-voltage redox chemistry is an essential component of many electrochemical technologies, from (electro)catalysts to lithium-ion batteries. Oxygen-anion redox has garnered intense interest for such applications, particularly lithium-ion batteries, as it offers substantial redox capacity at more than 4 V versus Li/Li+ in a variety of oxide materials. However, oxidation of oxygen is almost universally correlated with irreversible local structural transformations, voltage hysteresis and voltage fade, which currently preclude its widespread use. By comprehensively studying the Li2-xIr1-ySnyO3 model system, which exhibits tunable oxidation state and structural evolution with y upon cycling, we reveal that this structure-redox coupling arises from the local stabilization of short approximately 1.8 Å metal-oxygen π bonds and approximately 1.4 Å O-O dimers during oxygen redox, which occurs in Li2-xIr1-ySnyO3 through ligand-to-metal charge transfer. Crucially, formation of these oxidized oxygen species necessitates the decoordination of oxygen to a single covalent bonding partner through formation of vacancies at neighbouring cation sites, driving cation disorder. These insights establish a point-defect explanation for why anion redox often occurs alongside local structural disordering and voltage hysteresis during cycling. Our findings offer an explanation for the unique electrochemical properties of lithium-rich layered oxides, with implications generally for the design of materials employing oxygen redox chemistry.

5.
Adv Mater ; 36(1): e2304468, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951714

RESUMO

Despite intensive studies over decades, the development of electrocatalysts for acidic water splitting still relies on platinum group metals, especially Pt and Ir, which are scarce, expensive, and poorly sustainable. Because such problems can be alleviated, Ru-based bifunctional catalysts such as rutile RuO2 have recently emerged. However, RuO2 has a relatively low activity for hydrogen evolution reactions (HER) and low stability for oxygen evolution reactions (OER) under acidic conditions. In this study, the synthesis of a RuOx -based bifunctional catalyst (RuSiW) for acidic water splitting via the electrochemical evolution from Ru-based polyoxometalates at cathodic potentials is reported. RuSiW consists of the nanocrystalline RuO2 core and Si,W-codoped RuOx shell. RuSiW exhibits outstanding HER and OER activity comparable to Pt/C and RuO2 , respectively, with high stability. Computational analysis suggests that the codoping of RuOx with W and Si synergistically improves the HER activity of otherwise poor RuO2 by shifting the d-band center and optimizing atomic configurations beneficial for proper hydrogen adsorption. This study provides insights into the design and synthesis of unprecedented bifunctional electrocatalysts using catalytically inactive and less explored elements, such as Si and W.

6.
J Am Chem Soc ; 135(26): 9733-42, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23758262

RESUMO

Lithium-oxygen chemistry offers the highest energy density for a rechargeable system as a "lithium-air battery". Most studies of lithium-air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a "lithium-dioxygen battery". Consequently, the next step for the lithium-"air" battery is to understand how the reaction chemistry is affected by the constituents of ambient air. Among the components of air, CO2 is of particular interest because of its high solubility in organic solvents and it can react actively with O2(-•), which is the key intermediate species in Li-O2 battery reactions. In this work, we investigated the reaction mechanisms in the Li-O2/CO2 cell under various electrolyte conditions using quantum mechanical simulations combined with experimental verification. Our most important finding is that the subtle balance among various reaction pathways influencing the potential energy surfaces can be modified by the electrolyte solvation effect. Thus, a low dielectric electrolyte tends to primarily form Li2O2, while a high dielectric electrolyte is effective in electrochemically activating CO2, yielding only Li2CO3. Most surprisingly, we further discovered that a high dielectric medium such as DMSO can result in the reversible reaction of Li2CO3 over multiple cycles. We believe that the current mechanistic understanding of the chemistry of CO2 in a Li-air cell and the interplay of CO2 with electrolyte solvation will provide an important guideline for developing Li-air batteries. Furthermore, the possibility for a rechargeable Li-O2/CO2 battery based on Li2CO3 may have merits in enhancing cyclability by minimizing side reactions.


Assuntos
Dióxido de Carbono/química , Fontes de Energia Elétrica , Lítio/química , Oxigênio/química , Ar , Tamanho da Partícula , Teoria Quântica , Propriedades de Superfície
7.
J Am Chem Soc ; 135(37): 13870-8, 2013 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-23952799

RESUMO

Large-scale electric energy storage is a key enabler for the use of renewable energy. Recently, the room-temperature Na-ion battery has been rehighlighted as an alternative low-cost technology for this application. However, significant challenges such as energy density and long-term stability must be addressed. Herein, we introduce a novel cathode material, Na1.5VPO4.8F0.7, for Na-ion batteries. This new material provides an energy density of ~600 Wh kg(-1), the highest value among cathodes, originating from both the multielectron redox reaction (1.2 e(-) per formula unit) and the high potential (~3.8 V vs Na(+)/Na) of the tailored vanadium redox couple (V(3.8+)/V(5+)). Furthermore, an outstanding cycle life (~95% capacity retention for 100 cycles and ~84% for extended 500 cycles) could be achieved, which we attribute to the small volume change (2.9%) upon cycling, the smallest volume change among known Na intercalation cathodes. The open crystal framework with two-dimensional Na diffusional pathways leads to low activation barriers for Na diffusion, enabling excellent rate capability. We believe that this new material can bring the low-cost room-temperature Na-ion battery a step closer to a sustainable large-scale energy storage system.

8.
Mater Horiz ; 10(4): 1274-1281, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36806877

RESUMO

Accurately estimating the state-of-health (SOH) of lithium-ion batteries is emerging as a hot topic because of the rapid increase in electric appliance usage. However, versatile applicability to various battery compositions and diverse cycling conditions, and prediction only with partial data still remain challenges. In this paper, a Deep-learning-based Graphical approach to Estimation of Lithium-ion batteries SOH (D-GELS) was developed to predict the SOH covering three cathode materials, LiFePO4, LiNiCoAlO2, and LiNiCOMnO2. D-GELS shows an accurate performance for SOH prediction, less than 0.012 of RMSE, was predicted regardless of cathode materials, and its applicability was confirmed. Furthermore, D-GELS was capable of predicting the SOH using partially-cycled data, since less than 0.046 of RMSE was observed even with 50% of the image missing. When using partially-cycled profiles, significant economic benefits can be seen in used battery management, as the number of assessed batteries increases greatly, leading to cost savings.

9.
Adv Mater ; 35(38): e2303199, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37395728

RESUMO

The majority of waste-heat energy exists in the form of low-grade heat (<100 °C), which is immensely difficult to convert into usable energy using conventional energy-harvesting systems. Thermally regenerative electrochemical cycles (TREC), which integrate battery and thermal-energy-harvesting functionalities, are considered an attractive system for low-grade heat harvesting. Herein, the role of structural vibration modes in enhancing the efficacy of TREC systems is investigated. How changes in bonding covalency, influenced by the number of structural water molecules, impact the vibration modes is analyzed. It is discovered that even small amounts of water molecules can induce the A1g stretching mode of cyanide ligands with strong structural vibration energy, which significantly contributes to a larger temperature coefficient (ɑ) in a TREC system. Leveraging these insights, a highly efficient TREC system using a sodium-ion-based aqueous electrolyte is designed and implemented. This study provides valuable insights into the potential of TREC systems, offering a deeper understanding of the intrinsic properties of Prussian Blue analogs regulated by structural vibration modes. These insights open up new possibilities for enhancing the energy-harvesting capabilities of TREC systems.

10.
J Colloid Interface Sci ; 652(Pt B): 1784-1792, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683406

RESUMO

Producing hydrogen peroxide (H2O2) from H2O and O2 under visible light irradiation is a promising solar-to-chemical energy conversion technology. Hydrogen peroxide has versatile applications as a green oxidant and liquid energy carrier but has been produced through energy-intensive and complex anthraquinone processes. Herein, we report the rational design of efficient and stable porous organic polymer (POP) containing redox centers, anthraquinone photocatalyst (ANQ-POP) for solar H2O2 production. ANQ-POP is readily synthesized with stable dioxin-linkages via efficient one-pot, transition-metal-free nucleophilic aromatic substitution reactions between 1,2,3,4,5,6,7,8-octafluoro-9,10-anthraquinone (OFANQ) and 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP). Exhibiting a fibrillar morphology, ANQ-POP boasts a high surface area of 380 m2∙g-1 and demonstrates thermal stability. With 10 % ethanol, ANQ-POP yields an H2O2 production rate of 320 µmol g-1 under visible light irradiation. Moreover, ANQ-POP alone can efficiently produce H2O2 without any photosensitizers and cocatalysts. Density functional theory calculations reveal that the quinone groups of the anthraquinone moieties can serve as redox centers for H2O2 production under light irradiation. Furthermore, unlike most conventional photocatalysts, it can produce H2O2 using only water and air by catalyzing both oxygen reduction and evolution reactions under light irradiation. Our findings provide an efficient, eco-friendly pathway for photocatalytic production of H2O2 under mild reaction conditions using a dioxin-derived POP-based photocatalyst.

11.
Nat Commun ; 14(1): 2459, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117172

RESUMO

Designing highly conductive and (electro)chemical stable inorganic solid electrolytes using cost-effective materials is crucial for developing all-solid-state batteries. Here, we report halide nanocomposite solid electrolytes (HNSEs) ZrO2(-ACl)-A2ZrCl6 (A = Li or Na) that demonstrate improved ionic conductivities at 30 °C, from 0.40 to 1.3 mS cm-1 and from 0.011 to 0.11 mS cm-1 for Li+ and Na+, respectively, compared to A2ZrCl6, and improved compatibility with sulfide solid electrolytes. The mechanochemical method employing Li2O for the HNSEs synthesis enables the formation of nanostructured networks that promote interfacial superionic conduction. Via density functional theory calculations combined with synchrotron X-ray and 6Li nuclear magnetic resonance measurements and analyses, we demonstrate that interfacial oxygen-substituted compounds are responsible for the boosted interfacial conduction mechanism. Compared to state-of-the-art Li2ZrCl6, the fluorinated ZrO2-2Li2ZrCl5F HNSE shows improved high-voltage stability and interfacial compatibility with Li6PS5Cl and layered lithium transition metal oxide-based positive electrodes without detrimentally affecting Li+ conductivity. We also report the assembly and testing of a Li-In||LiNi0.88Co0.11Mn0.01O2 all-solid-state lab-scale cell operating at 30 °C and 70 MPa and capable of delivering a specific discharge of 115 mAh g-1 after almost 2000 cycles at 400 mA g-1.

12.
Adv Mater ; 35(13): e2208423, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36600458

RESUMO

Understanding the local cation order in the crystal structure and its correlation with electrochemical performances has advanced the development of high-energy Mn-rich cathode materials for Li-ion batteries, notably Li- and Mn-rich layered cathodes (LMR, e.g., Li1.2 Ni0.13 Mn0.54 Co0.13 O2 ) that are considered as nanocomposite layered materials with C2/m Li2 MnO3 -type medium-range order (MRO). Moreover, the Li-transport rate in high-capacity Mn-based disordered rock-salt (DRX) cathodes (e.g., Li1.2 Mn0.4 Ti0.4 O2 ) is found to be influenced by the short-range order of cations, underlining the importance of engineering the local cation order in designing high-energy materials. Herein, the nanocomposite is revealed, with a heterogeneous nature (like MRO found in LMR) of ultrahigh-capacity partially ordered cathodes (e.g., Li1.68 Mn1.6 O3.7 F0.3 ) made of distinct domains of spinel-, DRX- and layered-like phases, contrary to conventional single-phase DRX cathodes. This multi-scale understanding of ordering informs engineering the nanocomposite material via Ti doping, altering the intra-particle characteristics to increase the content of the rock-salt phase and heterogeneity within a particle. This strategy markedly improves the reversibility of both Mn- and O-redox processes to enhance the cycling stability of the partially ordered DRX cathodes (nearly ≈30% improvement of capacity retention). This work sheds light on the importance of nanocomposite engineering to develop ultrahigh-performance, low-cost Li-ion cathode materials.

13.
J Am Chem Soc ; 134(25): 10369-72, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22667817

RESUMO

New iron-based mixed-polyanion compounds Li(x)Na(4-x)Fe(3)(PO(4))(2)(P(2)O(7)) (x = 0-3) were synthesized, and their crystal structures were determined. The new compounds contained three-dimensional (3D)sodium/lithium paths supported by P(2)O(7) pillars in the crystal. First principles calculations identified the complex 3D paths with their activation barriers and revealed them as fast ionic conductors. The reversible electrode operation was found in both Li and Na cells with capacities of one-electron reaction per Fe atom, 140 and 129 mAh g(-1), respectively. The redox potential of each phase was ∼3.4 V (vs Li) for the Li-ion cell and ∼3.2 V (vs Na) for the Na-ion cell. The properties of high power, small volume change, and high thermal stability were also recognized, presenting this new compound as a potential competitor to other iron-based electrodes such as Li(2)FeP(2)O(7), Li(2)FePO(4)F, and LiFePO(4).

14.
Phys Chem Chem Phys ; 14(10): 3299-303, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22306916

RESUMO

Electrochemical properties of A(2)MnPO(4)F (A = Na/Li) were investigated both experimentally and with first principles calculations. A new Li(2)MnPO(4)F phase was successfully synthesized for the first time. A one alkali metal ion reaction occurred reversibly within a reasonable voltage window and a two alkali metal ion reaction took place at higher voltages.

15.
Sci Adv ; 8(14): eabm8584, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35394847

RESUMO

The development of a cathode for solid-state lithium-oxygen batteries has been hindered in practice by a low capacity and limited cycle life despite their potential for high energy density. Here, a previously unexplored strategy is proposed wherein the cathode delivers a specific capacity of 200 milliampere hour per gram over 665 discharge/charge cycles, while existing cathodes achieve only ~50 milliampere hour per gram and ~100 cycles. A highly conductive ruthenium-based composite is designed as a carbon-free cathode by first-principles calculations to avoid the degradation associated with carbonaceous materials, implying an improvement in stability during the electrochemical cycling. In addition, water vapor is added into the main oxygen gas as an additive to change the discharge product from growth-restricted lithium peroxide to easily grown lithium hydroxide, resulting in a notable increase in capacity. Thus, the proposed strategy is effective for developing reversible solid-state lithium-oxygen batteries with high energy density.

16.
Adv Mater ; 33(18): e2100352, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33783055

RESUMO

In recent years, Li- and Mn-rich layered oxides (LMRs) have been vigorously explored as promising cathodes for next-generation, Li-ion batteries due to their high specific energy. Nevertheless, their actual implementation is still far from a reality since the trade-off relationship between the particle size and chemical reversibility prevents LMRs from achieving a satisfactory, industrial energy density. To solve this material dilemma, herein, a novel morphological and structural design is introduced to Li1.11 Mn0.49 Ni0.29 Co0.11 O2 , reporting a sub-micrometer-level LMR with a relatively delocalized, excess-Li system. This system exhibits an ultrahigh energy density of 2880 Wh L-1 and a long-lasting cycle retention of 83.1% after the 100th cycle for 45 °C full-cell cycling, despite its practical electrode conditions. This outstanding electrochemical performance is a result of greater lattice-oxygen stability in the delocalized excess-Li system because of the low amount of highly oxidized oxygen ions. Geometric dispersion of the labile oxygen ions effectively suppresses oxygen evolution from the lattice when delithiated, eradicating the rapid energy degradation in a practical cell system.

17.
Nat Commun ; 12(1): 6552, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772958

RESUMO

Doping is a well-known strategy to enhance the electrochemical energy storage performance of layered cathode materials. Many studies on various dopants have been reported; however, a general relationship between the dopants and their effect on the stability of the positive electrode upon prolonged cell cycling has yet to be established. Here, we explore the impact of the oxidation states of various dopants (i.e., Mg2+, Al3+, Ti4+, Ta5+, and Mo6+) on the electrochemical, morphological, and structural properties of a Ni-rich cathode material (i.e., Li[Ni0.91Co0.09]O2). Galvanostatic cycling measurements in pouch-type Li-ion full cells show that cathodes featuring dopants with high oxidation states significantly outperform their undoped counterparts and the dopants with low oxidation states. In particular, Li-ion pouch cells with Ta5+- and Mo6+-doped Li[Ni0.91Co0.09]O2 cathodes retain about 81.5% of their initial specific capacity after 3000 cycles at 200 mA g-1. Furthermore, physicochemical measurements and analyses suggest substantial differences in the grain geometries and crystal lattice structures of the various cathode materials, which contribute to their widely different battery performances and correlate with the oxidation states of their dopants.

18.
JACS Au ; 1(12): 2339-2348, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34977902

RESUMO

The economic viability and systemic sustainability of a green hydrogen economy are primarily dependent on its storage. However, none of the current hydrogen storage methods meet all the targets set by the US Department of Energy (DoE) for mobile hydrogen storage. One of the most promising routes is through the chemical reaction of alkali metals with water; however, this method has not received much attention owing to its irreversible nature. Herein, we present a reconditioned seawater battery-assisted hydrogen storage system that can provide a solution to the irreversible nature of alkali-metal-based hydrogen storage. We show that this system can also be applied to relatively lighter alkali metals such as lithium as well as sodium, which increases the possibility of fulfilling the DoE target. Furthermore, we found that small (1.75 cm2) and scaled-up (70 cm2) systems showed high Faradaic efficiencies of over 94%, even in the presence of oxygen, which enhances their viability.

19.
Adv Mater ; 33(43): e2104763, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34510588

RESUMO

Li+ intercalates into a pure face-centered-cubic (fcc) C60 structure instead of being adsorbed on a single C60 molecule. This hinders the excess storage of Li ions in Li-ion batteries, thereby limiting their applications. However, the associated electrochemical processes and mechanisms have not been investigated owing to the low electrochemical reactivity and poor crystallinity of the C60 powder. Herein, a facile method for synthesizing pure fcc C60 nanoparticles with uniform morphology and superior electrochemical performance in both half- and full-cells is demonstrated using a 1 m LiPF6 solution in ethylene carbonate/diethyl carbonate (1:1 vol%) with 10% fluoroethylene carbonate. The specific capacity of the C60 nanoparticles during the second discharge reaches ≈750 mAh g-1 at 0.1 A g-1 , approximately twice that of graphite. Moreover, by applying in situ X-ray diffraction, high-resolution transmission electron microscopy, and first-principles calculations, an abnormally high Li storage in a crystalline C60 structure is proposed based on the vacant sites among the C60 molecules, Li clusters at different sites, and structural changes during the discharge/charge process. The fcc of C60 transforms tetragonal via orthorhombic Lix C60 and back to the cubic phase during discharge. The presented results will facilitate the development of novel fullerene-based anode materials for Li-ion batteries.

20.
Science ; 367(6481): 1030-1034, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32108110

RESUMO

Fast-charging batteries typically use electrodes capable of accommodating lithium continuously by means of solid-solution transformation because they have few kinetic barriers apart from ionic diffusion. One exception is lithium titanate (Li4Ti5O12), an anode exhibiting extraordinary rate capability apparently inconsistent with its two-phase reaction and slow Li diffusion in both phases. Through real-time tracking of Li+ migration using operando electron energy-loss spectroscopy, we reveal that facile transport in Li4+ x Ti5O12 is enabled by kinetic pathways comprising distorted Li polyhedra in metastable intermediates along two-phase boundaries. Our work demonstrates that high-rate capability may be enabled by accessing the energy landscape above the ground state, which may have fundamentally different kinetic mechanisms from the ground-state macroscopic phases. This insight should present new opportunities in searching for high-rate electrode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA