Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1030: 51-94, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29081050

RESUMO

The ability to design functionalized peptide nanostructures for specific applications is tied to the ability of controlling the morphologies of the self-assembled superstructures. That, in turn, is based on a thorough understanding of the structural and environmental factors affecting self-assembly. The aim of designing self-assembling nanostructures of controlled geometries is achieved via a combination of directional and non-directional second order interactions. If the interactions are distributed in a geometrically defined way, a specific and selective supramolecular self-assembly motif is the result. In this chapter we detail the role of non-covalent interactions on the self-assembly of peptides; we will also discuss different types of peptide building blocks and design rules for engineering unnatural supramolecular structures.


Assuntos
Aminoácidos/química , Nanoestruturas/química , Peptídeos/química , Estrutura Secundária de Proteína , Adsorção , Sequência de Aminoácidos , Aminoácidos/metabolismo , Desenho Assistido por Computador , Modelos Moleculares , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Engenharia de Proteínas
2.
Nanotechnology ; 27(13): 135606, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26909736

RESUMO

ß(3)-amino acid based polypeptides offer a unique starting material for the design of self-assembled nanostructures such as fibres and hierarchical dendritic assemblies, due to their well-defined helical geometry in which the peptide side chains align at 120° due to the 3.0-3.1 residue pitch of the helix. In a previous work we have described the head-to-tail self-assembly of N-terminal acetylated ß(3)-peptides into infinite helical nanorods that was achieved by designing a bioinspired supramolecular self-assembly motif. Here we describe the effect of consecutively more polar side chains on the self-assembly characteristics of ß(3)-tetrapeptides Ac-ß (3)Ala-ß(3)Leu-ß(3)Ile-ß(3)Ala (Ac-ß(3)[ALIA]), Ac-ß(3)Ser-ß(3)Leu-ß(3)Ile-ß(3)Ala (Ac-ß(3)[SLIA]) and Ac-ß (3)Lys-ß (3)Leu-ß(3)Ile-ß (3)Glu (Ac-ß(3)[KLIE]). ß(3)-tetrapeptides complete 1 1/3 turns of the helix: thus in the oligomeric form the side chain positions shift 120° with each added monomer, forming a regular periodic pattern along the nanorod. Dynamic light scattering (DLS) measurements confirmed that these peptides self-assemble even in highly polar solvents such as water and DMSO, while diffusion-ordered NMR spectroscopy revealed the presence of a substantial monomeric population. Temperature dependence of the size distribution in DLS measurements suggests a dynamic equilibrium between monomers and oligomers. Solution casting produced distinct fibrillar deposits after evaporating the solvent. In the case of the apolar Ac-ß(3)[ALIA] the longitudinal helix morphology gives rise to geometrically defined (∼70°) junctions between fibres, forming a mesh that opens up possibilities for applications e.g. in tissue scaffolding. The deposits of polar Ac-ß(3)[SLIA] and Ac-ß(3)[KLIE] exhibit fibres in regular parallel alignment over surface areas in the order of 10 µm.


Assuntos
Nanoestruturas/química , Oligopeptídeos/química , Difusão Dinâmica da Luz , Microscopia de Força Atômica , Modelos Moleculares , Conformação Molecular , Solventes , Temperatura
3.
Phys Chem Chem Phys ; 18(16): 11467-73, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27057653

RESUMO

Bioinspired fibres and hierarchical nano-materials are based on the self-assembly of organic building blocks such as polypeptides. Confirming the core structure of such materials is often challenging as they lack the long-range order required by crystallographic methods. Far-IR spectroscopy characterizes the vibrational modes of large molecular units. These vibrational modes are very sensitive to angle strain and second order interactions such as hydrogen bonding. As such, far-IR spectra hold information about the secondary structure and interactions of large biomolecules. Here we analyze the far-IR vibrational spectra of fibrous nano-materials based on three isomeric unnatural tripeptides, Ac-ß(3)Leu-ß(3)Ile-ß(3)Ala, Ac-ß(3)Ile-ß(3)Ala-ß(3)Leu, and Ac-ß(3)Ala-ß(3)Leu-ß(3)Ile. These peptides have well described self-assembly characteristics, forming one-dimensional nanorods that impose tight conformational constraints on the constituent molecules. The synchrotron far-IR spectroscopic results were interpreted by using density functional theory (DFT) modelling based vibrational analysis. The sensitivity of the spectra to peptide conformation was assessed by comparing the experimental spectra with DFT predictions. In high dielectric implicit solvent, intramolecular hydrogen-bonding is inhibited and thus the energy minimized peptide structure remains close to the 14-helix folding characteristic of substituted ß(3)-peptides, giving good agreement between the experimental and predicted vibration spectra. In contrast, energy minimization in vacuum alters the peptide conformation leading to intramolecular hydrogen bonds, and hence the predicted vibration spectra do not agree with the experimental data. Therefore, our results demonstrate the ability of far-IR spectroscopy to identify correct structural predictions and thus open the way for using far-IR spectroscopy for the characterization and structural analysis of bioinspired nano-materials and potentially their interactions with surfaces, ionic environments and other biomolecules. Far-IR structural analysis is particularly powerful in case of one- and two-dimensional materials such as fibres, hydrogels and thin layers where standard crystallographic analysis is not available.


Assuntos
Nanoestruturas , Espectrofotometria Infravermelho/métodos , Síncrotrons , Estrutura Molecular
4.
Int J Biol Macromol ; 63: 163-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24211430

RESUMO

Three novel thiosemicarbazone O-carboxymethyl chitosan derivatives were obtained via a condensation reaction of thiosemicarbazide O-carboxymethyl chitosan with o-hydroxybenzaldehyde, p-methoxybenzaldehyde, and p- chlorobenzaldehyde respectively. Their structures were characterized by elemental analysis, FTIR, (13)C NMR and X-ray diffraction. The antimicrobial behaviors of the prepared derivatives against three types of bacteria Staphylococcus aureus (S. aureus, RCMBA 2004), Bacillus subtilis (B. subtilis, RCMBA 6005), and Escherichia coli (E. Coli, RCMBA 5003) and three crops-threatening pathogenic fungi Aspergillus fumigatus (A. fumigatus, RCMBA 06002), Geotrichum candidum (G. candidum, RCMB 05098), and Candida albicans (C. albicans, RCMB 05035) were investigated. The results indicated that the antibacterial and antifungal activities of the investigated derivatives are much higher than those of the parent O-carboxymethyl chitosan. They were more potent in case of Gram-positive bacteria than Gram-negative bacteria. The presence of electron withdrawing chlorine atom on the aryl moiety of the aldehyde portion improved greatly antimicrobial activity to be nearly equivalent to the used standard drugs.


Assuntos
Bactérias/efeitos dos fármacos , Quitosana/análogos & derivados , Fungos/efeitos dos fármacos , Tiossemicarbazonas/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Quitosana/síntese química , Quitosana/química , Quitosana/farmacologia , Testes de Sensibilidade Microbiana , Espectrofotometria Infravermelho , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA