Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 477(7364): 308-11, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21921913

RESUMO

Steric effects in chemistry are a consequence of the space required to accommodate the atoms and groups within a molecule, and are often thought to be dominated by repulsive forces arising from overlapping electron densities (Pauli repulsion). An appreciation of attractive interactions such as van der Waals forces (which include London dispersion forces) is necessary to understand chemical bonding and reactivity fully. This is evident from, for example, the strongly debated origin of the higher stability of branched alkanes relative to linear alkanes and the possibility of constructing hydrocarbons with extraordinarily long C-C single bonds through steric crowding. Although empirical bond distance/bond strength relationships have been established for C-C bonds (longer C-C bonds have smaller bond dissociation energies), these have no present theoretical basis. Nevertheless, these empirical considerations are fundamental to structural and energetic evaluations in chemistry, as summarized by Pauling as early as 1960 and confirmed more recently. Here we report the preparation of hydrocarbons with extremely long C-C bonds (up to 1.704 Å), the longest such bonds observed so far in alkanes. The prepared compounds are unexpectedly stable--noticeable decomposition occurs only above 200 °C. We prepared the alkanes by coupling nanometre-sized, diamond-like, highly rigid structures known as diamondoids. The extraordinary stability of the coupling products is due to overall attractive dispersion interactions between the intramolecular H•••H contact surfaces, as is evident from density functional theory computations with and without inclusion of dispersion corrections.

2.
J Am Chem Soc ; 137(20): 6577-86, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-25914113

RESUMO

Nanometer-sized doubly bonded diamondoid dimers and trimers, which may be viewed as models of diamond with surface sp(2)-defects, were prepared from corresponding ketones via a McMurry coupling and were characterized by spectroscopic and crystallographic methods. The neutral hydrocarbons and their radical cations were studied utilizing density functional theory (DFT) and ab initio (MP2) methods, which reproduce the experimental geometries and ionization potentials well. The van der Waals complexes of the oligomers with their radical cations that are models for the self-assembly of diamondoids, form highly delocalized and symmetric electron-deficient structures. This implies a rather high degree of σ-delocalization within the hydrocarbons, not too dissimilar to delocalized π-systems. As a consequence, sp(2)-defects are thus also expected to be nonlocal, thereby leading to the observed high surface charge mobilities of diamond-like materials. In order to be able to use the diamondoid oligomers for subsequent surface attachment and modification, their C-H-bond functionalizations were studied, and these provided halogen and hydroxy derivatives with conservation of unsaturation.

3.
J Org Chem ; 79(4): 1861-6, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24433143

RESUMO

Homodiamantane bromination and nitroxylation are accompanied by contraction of the seven-membered ring to give the corresponding substituted 1-diamantylmethyl derivatives. In contrast, CH-bond hydroxylations with dimethyldioxirane retain the cage and give both apically and medially substituted homodiamantanes. The product ratios are in accord with the barriers for the oxygen insertion computed with density functional theory methods only if solvation is included through a polarizable continuum model. B3LYP-D3 and M06-2X computations with a 6-31G(d,p) basis set on the oligomeric van der Waals complexes predict the potential of homodiamantane derivatives for surface modifications with conformationally slightly flexible diamondoid homologues.

4.
J Org Chem ; 79(11): 5369-73, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24816428

RESUMO

We present an effective sequence for the preparation of phosphonic acid derivatives of the diamondoids diamantane, triamantane, [121]tetramantane, and [1(2,3)4]pentamantane. The reactions of the corresponding diamondoid hydroxy derivatives with PCl3 in sulfuric or trifluoroacetic acid give mono- as well as didichlorophosphorylated diamondoids in high preparative yields.

5.
J Am Chem Soc ; 134(33): 13641-50, 2012 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22835264

RESUMO

The metal-induced coupling of tertiary diamondoid bromides gave highly sterically congested hydrocarbon (hetero)dimers with exceptionally long central C-C bonds of up to 1.71 Å in 2-(1-diamantyl)[121]tetramantane. Yet, these dimers are thermally very stable even at temperatures above 200 °C, which is not in line with common C-C bond length versus bond strengths correlations. We suggest that the extraordinary stabilization arises from numerous intramolecular van der Waals attractions between the neighboring H-terminated diamond-like surfaces. The C-C bond rotational dynamics of 1-(1-adamantyl)diamantane, 1-(1-diamantyl)diamantane, 2-(1-adamantyl)triamantane, 2-(1-diamantyl)triamantane, and 2-(1-diamantyl)[121]tetramantane were studied through variable-temperature (1)H- and (13)C NMR spectroscopies. The shapes of the inward (endo) CH surfaces determine the dynamic behavior, changing the central C-C bond rotation barriers from 7 to 33 kcal mol(-1). We probe the ability of popular density functional theory (DFT) approaches (including BLYP, B3LYP, B98, B3LYP-Dn, B97D, B3PW91, BHandHLYP, B3P86, PBE1PBE, wB97XD, and M06-2X) with 6-31G(d,p) and cc-pVDZ basis sets to describe such an unusual bonding situation. Only functionals accounting for dispersion are able to reproduce the experimental geometries, while most DFT functionals are able to reproduce the experimental rotational barriers due to error cancellations. Computations on larger diamondoids reveal that the interplay between the shapes and the sizes of the CH surfaces may even allow the preparation of open-shell alkyl radical dimers (and possibly polymers) that are strongly held together exclusively by dispersion forces.

6.
Chemistry ; 15(34): 8548-8557, 2009 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-19637264

RESUMO

We have studied the formation of several N-acetyl-4-(dimethylamino)pyridine (DMAP) salts (with Cl(-), CH(3)COO(-), and CF(3)COO(-) counterions), which are considered to be the catalytically active species in DMAP-catalyzed acetylation reactions of alcohols. Combined crystal structure analyses, variable temperature matrix IR and NMR spectroscopy as well as computational techniques at the UAHF-PCM-B3LYP/6-311+G(d,p)//B3LYP/6-31G(d) level were utilized to examine the structures and dynamics of salt formation. We found clear evidence for the formation of tight ion pairs that are stabilized by dynamic hydrogen-bonding interactions. In nonpolar solvents, the nucleophilicity of acetate in its N-acetyl-DMAP salt only allows a steady-state concentration smaller 1% at room temperature. Thus, we propose additional hydrogen-bonding interactions with alcohols to be the key stabilization factor in subsequent acetylations.

7.
Chemistry ; 15(15): 3851-62, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19229930

RESUMO

Various functional groups have been incorporated into the structures of the naturally occurring diamondoids [1(2)3]tetramantane and [12312]hexamantane (cyclohexamantane), which represent hydrogen-terminated prism-shaped nanodiamonds. The selectivities of the C-H substitutions in [1(2)3]tetramantane depend on the reagent employed and give products substituted at either central (through bromination) or peripheral (through nitroxylation and photo-oxidation) positions. The hydrogen-coupled electron-transfer mechanism of C-H nitroxylation with the model electrophile NO(2)(+)...HNO(3) was verified computationally at the B3PW91 and MP2 levels of theory by utilizing the 6-31G(d) and cc-pVDZ basis sets. The thermodynamically controlled nitroxylation/isomerization of [1(2)3]tetramantane allows the preparation of peripherally trisubstituted derivatives, which were transformed into tripod-like nanodiamond building blocks. The bromination of cyclohexamantane selectively gives the 2-bromo derivative, reproducing the chemical behavior of the {111} surface of the hydrogen-terminated diamond.

8.
J Org Chem ; 73(19): 7789-92, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18761438

RESUMO

The monoprotection (desymmetrization) of diamondoid, benzylic, and ethynyl diols has been achieved using fluorinated alcohols such as 2,2,2-trifluoroethanol (TFE) under acidic conditions. This practical acid-catalyzed S(N)1 reaction opens the door for the synthesis of novel bifunctional diamondoids. With diamantane as an example, we show that the resulting monoethers can be used to prepare selectively, for instance, amino or nitro alcohols and unnatural amino acids. These are important compounds in terms of the exploration of electronic, pharmacological, and material properties of functionalized nanodiamonds.

9.
Org Lett ; 11(14): 3068-71, 2009 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-19586063

RESUMO

Oxadiamondoids representing a new class of carbon nanoparticles were prepared from the respective diamondoid ketones via an effective two-step procedure involving addition of methyl magnesium iodide and oxidation with trifluoroperacetic acid in trifluoroacetic acid. The reactivities of the oxacages are determined by the position of the dopant and are in good agreement with computational predictions.

10.
J Org Chem ; 71(22): 8532-40, 2006 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-17064030

RESUMO

To model the chemical properties of the hydrogen-terminated nanodiamond {111} and {110} surfaces, the functionalizations of the higher diamondoid [1(2,3)4]pentamantane were studied. [1(2,3)4]Pentamantane reacts selectively with neat bromine to give the medial 2-mono- and 2,4-disubstitution products. In contrast, oxidation with nitric acid as well as single-electron-transfer oxidation involving the [1(2,3)4]pentamantane radical cation results in apical C7-substitutions. This substitution pattern dominates in the free-radical bromination under phase-transfer catalytic conditions that gives a mixture of 7- and 2-bromo[1(2,3)4]pentamantane in a 95:5 ratio. Replacement of the functional groups in [1(2,3)4]pentamantane occurs without isomerization. This was demonstrated for the interconversions of the bromo and hydroxy derivatives as well as for the preparation of [1(2,3)4]pentamantyl-7-thiol from 7-hydroxy[1(2,3)4]pentamantane. Thus, the selective functionalization of hydrogen-terminated nanodiamonds is possible by means of reactions with common electrophiles-oxidizers.

11.
J Org Chem ; 71(18): 6709-20, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16930019

RESUMO

The selective functionalizations of the fundamental hydrogen-terminated nanodiamonds triamantane 1, as well as the most symmetrical representative of the tetramantanes (C(2h)-[121]tetramantane 2) were elaborated. Electrophilic reagents (Br2, HNO3) predominantly attack the medial C-H positions of the cages; bromination of 2 gave the medial 2-bromo derivative almost exclusively. Highly selective apical substitution in 1 and 2 is possible either under single-electron-transfer oxidations via hydrocarbon radical cations or through photoacetylation with diacetyl. The mono- and the bis-acetyl derivatives of 1 and 2 were converted through Bayer-Villiger oxidation and subsequent hydrolysis to the respective apical mono- and dihydroxy derivatives. This exceptional synthetic specificity facilitates the transformation of 2, and perhaps larger nanodiamond molecules, into functionalized building blocks needed for a wide range of applications such as nanotechnology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA