Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996435

RESUMO

Argentine hemorrhagic fever is a potentially lethal disease that is caused by Junin virus (JUNV). There are currently around 5 million individuals at risk of infection within regions of endemicity in Argentina. The live attenuated vaccine strain Candid #1 (Can) is approved for use in regions of endemicity and has substantially decreased the number of annual Argentine hemorrhagic fever (AHF) cases. The glycoprotein (GPC) gene is primarily responsible for attenuation of the Can strain, and we have shown that the absence of an N-linked glycosylation motif in the subunit G1 of the glycoprotein complex of Can, which is otherwise present in the wild-type pathogenic JUNV, causes GPC retention in the endoplasmic reticulum (ER). Here, we show that Can GPC aggregates in the ER of infected cells, forming incorrect cross-chain disulfide bonds, which results in impaired GPC processing into G1 and G2. The GPC fails to cleave into its G1 and G2 subunits and is targeted for degradation within lysosomes. Cells infected with the wild-type Romero (Rom) strain do not produce aggregates that are observed in Can infection, and the stress on the ER remains minimal. While the mutation of the N-linked glycosylation motif (T168A) is primarily responsible for the formation of aggregates, other mutations within G1 that occurred earlier in the passage history of the Can strain also contribute to aggregation of the GPC within the ER.IMPORTANCE The development of vaccines and therapeutics to combat viral hemorrhagic fevers remains a top priority within the Implementation Plan of the U.S. Department of Health and Human Services Public Health Emergency Medical Countermeasures Enterprise. The Can strain, derived from the pathogenic XJ strain of JUNV, has been demonstrated to be both safe and protective against AHF. While the vaccine strain is approved for use in regions of endemicity within Argentina, the mechanisms of Can attenuation have not been elucidated. A better understanding of the viral genetic determinants of attenuation will improve our understanding of the mechanisms contributing to disease pathogenesis and provide critical information for the rational design of live attenuated vaccine candidates for other viral hemorrhagic fevers.


Assuntos
Estresse do Retículo Endoplasmático/imunologia , Glicoproteínas/imunologia , Vírus Junin/imunologia , Lisossomos/metabolismo , Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Animais , Autofagia , Encéfalo/metabolismo , Chlorocebus aethiops , Retículo Endoplasmático/imunologia , Glicoproteínas/genética , Glicosilação , Células HEK293 , Febre Hemorrágica Americana/virologia , Febres Hemorrágicas Virais/prevenção & controle , Humanos , Vírus Junin/genética , Camundongos , Mutação , Células Vero , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
2.
J Mater Sci Mater Med ; 29(3): 33, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29546502

RESUMO

A technology for obtaining materials from nanostructured nitinol with titanium- or tantalum-enriched surface layers was developed. Surface layers enriched with titanium or tantalum were shown to provide a decrease in the formation of reactive oxygen species and long-lived protein radicals in comparison to untreated nitinol. It was determined that human peripheral vessel myofibroblasts and human bone marrow mesenchymal stromal cells grown on nitinol bases coated with titanium or tantalum-enriched surface layers exhibit a nearly two times higher mitotic index. Response to implantation of pure nitinol, as well as nano-structure nitinol with titanium or tantalum-enriched surface layers, was expressed though formation of a mature uniform fibrous capsule peripherally to the fragment. The thickness of this capsule in the group of animals subjected to implantation of pure nitinol was 1.5 and 3.0-fold greater than that of the capsule in the groups implanted with nitinol fragments with titanium- or tantalum-enriched layers. No signs of calcinosis in the tissues surrounding implants with coatings were observed. The nature and structure of the formed capsules testify bioinertia of the implanted samples. It was shown that the morphology and composition of the surface of metal samples does not alter following biological tests. The obtained results indicate that nano-structure nitinol with titanium or tantalum enriched surface layers is a biocompatible material potentially suitable for medical applications.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Próteses e Implantes , Tantálio/química , Titânio/química , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Células Cultivadas , Humanos , Masculino , Teste de Materiais , Nanocompostos/química , Ratos , Ratos Wistar , Propriedades de Superfície
3.
J Virol ; 90(3): 1290-7, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581982

RESUMO

UNLABELLED: Machupo virus (MACV) is the causative agent of Bolivian hemorrhagic fever. Our previous study demonstrated that a MACV strain with a single amino acid substitution (F438I) in the transmembrane domain of glycoprotein is attenuated but genetically unstable in mice. MACV is closely related to Junin virus (JUNV), the causative agent of Argentine hemorrhagic fever. Others and our group have identified the glycoprotein to be the major viral factor determining JUNV attenuation. In this study, we tested the compatibility of the glycoprotein of the Candid#1 live-attenuated vaccine strain of JUNV in MACV replication and its ability to attenuate MACV in vivo. Recombinant MACV with the Candid#1 glycoprotein (rMACV/Cd#1-GPC) exhibited growth properties similar to those of Candid#1 and was genetically stable in vitro. In a mouse model of lethal infection, rMACV/Cd#1-GPC was fully attenuated, more immunogenic than Candid#1, and fully protective against MACV infection. Therefore, the MACV strain expressing the glycoprotein of Candid#1 is safe, genetically stable, and highly protective against MACV infection in a mouse model. IMPORTANCE: Currently, there are no FDA-approved vaccines and/or treatments for Bolivian hemorrhagic fever, which is a fatal human disease caused by MACV. The development of antiviral strategies to combat viral hemorrhagic fevers, including Bolivian hemorrhagic fever, is one of the top priorities of the Implementation Plan of the U.S. Department of Health and Human Services Public Health Emergency Medical Countermeasures Enterprise. Here, we demonstrate for the first time that MACV expressing glycoprotein of Candid#1 is a safe, genetically stable, highly immunogenic, and protective vaccine candidate against Bolivian hemorrhagic fever.


Assuntos
Arenavirus do Novo Mundo/genética , Arenavirus do Novo Mundo/imunologia , Glicoproteínas de Membrana/genética , Recombinação Genética , Proteínas do Envelope Viral/genética , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Estruturas Animais/patologia , Animais , Arenavirus do Novo Mundo/patogenicidade , Peso Corporal , Modelos Animais de Doenças , Instabilidade Genômica , Febre Hemorrágica Americana/patologia , Febre Hemorrágica Americana/prevenção & controle , Histocitoquímica , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Análise de Sequência de DNA , Análise de Sobrevida , Temperatura , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Virais/genética , Virulência
4.
J Virol ; 89(14): 7079-88, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25926656

RESUMO

UNLABELLED: The arenavirus family includes several important pathogens that cause severe and sometimes fatal diseases in humans. The highly pathogenic Old World (OW) arenavirus Lassa fever virus (LASV) is the causative agent of Lassa fever (LF) disease in humans. LASV infections in severe cases are generally immunosuppressive without stimulating interferon (IFN) induction, a proinflammatory response, or T cell activation. However, the host innate immune responses to highly pathogenic New World (NW) arenaviruses are not well understood. We have previously shown that the highly pathogenic NW arenavirus, Junin virus (JUNV), induced an IFN response in human A549 cells. Here, we report that Machupo virus (MACV), another highly pathogenic NW arenavirus, also induces an IFN response. Importantly, both pathogenic NW arenaviruses, in contrast to the OW highly pathogenic arenavirus LASV, readily elicited an IFN response in human primary dendritic cells and A549 cells. Coinfection experiments revealed that LASV could potently inhibit MACV-activated IFN responses even at 6 h after MACV infection, while the replication levels of MACV and LASV were not affected by virus coinfection. Our results clearly demonstrated that although all viruses studied herein are highly pathogenic to humans, the host IFN responses toward infections with the NW arenaviruses JUNV and MACV are quite different from responses to infections with the OW arenavirus LASV, a discovery that needs to be further investigated in relevant animal models. This finding might help us better understand various interplays between the host immune system and highly pathogenic arenaviruses as well as distinct mechanisms underlying viral pathogenesis. IMPORTANCE: Infections of humans with the highly pathogenic OW LASV are accompanied by potent suppression of interferon or proinflammatory cytokine production. In contrast, infections with the highly pathogenic NW arenavirus JUNV are associated with high levels of IFNs and cytokines in severe and fatal cases. Arenaviruses initially target macrophages and dendritic cells, which are potent IFN/cytokine-producers. In human macrophages, JUNV reportedly does not trigger IFN responses. We here demonstrated that JUNV activated IFN responses in human dendritic cells. MACV, another highly pathogenic NW arenavirus, also activated IFN responses. LASV did not induce detectable IFN responses, in spite of higher replication levels, and blocked the MACV-triggered IFN response in a coinfection assay. Although these viruses are highly pathogenic to humans, our study highlights distinct innate immune responses to infections with the NW arenaviruses JUNV and MACV and to infection with the OW arenavirus LASV and provides important insights into the virus-host interaction and pathogenesis.


Assuntos
Arenavirus do Novo Mundo/imunologia , Células Dendríticas/imunologia , Células Epiteliais/imunologia , Interferons/biossíntese , Vírus Junin/imunologia , Arenavirus do Novo Mundo/fisiologia , Células Cultivadas , Células Dendríticas/virologia , Células Epiteliais/virologia , Humanos , Vírus Junin/fisiologia , Replicação Viral
5.
J Virol ; 90(6): 2920-7, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26719273

RESUMO

UNLABELLED: Approximately one-third of Lassa virus (LASV)-infected patients develop sensorineural hearing loss (SNHL) in the late stages of acute disease or in early convalescence. With 500,000 annual cases of Lassa fever (LF), LASV is a major cause of hearing loss in regions of West Africa where LF is endemic. To date, no animal models exist that depict the human pathology of LF with associated hearing loss. Here, we aimed to develop an animal model to study LASV-induced hearing loss using human isolates from a 2012 Sierra Leone outbreak. We have recently established a murine model for LF that closely mimics many features of human disease. In this model, LASV isolated from a lethal human case was highly virulent, while the virus isolated from a nonlethal case elicited mostly mild disease with moderate mortality. More importantly, both viruses were able to induce SNHL in surviving animals. However, utilization of the nonlethal, human LASV isolate allowed us to consistently produce large numbers of survivors with hearing loss. Surviving mice developed permanent hearing loss associated with mild damage to the cochlear hair cells and, strikingly, significant degeneration of the spiral ganglion cells of the auditory nerve. Therefore, the pathological changes in the inner ear of the mice with SNHL supported the phenotypic loss of hearing and provided further insights into the mechanistic cause of LF-associated hearing loss. IMPORTANCE: Sensorineural hearing loss is a major complication for LF survivors. The development of a small-animal model of LASV infection that replicates hearing loss and the clinical and pathological features of LF will significantly increase knowledge of pathogenesis and vaccine studies. In addition, such a model will permit detailed characterization of the hearing loss mechanism and allow for the development of appropriate diagnostic approaches and medical care for LF patients with hearing impairment.


Assuntos
Modelos Animais de Doenças , Perda Auditiva Neurossensorial/patologia , Febre Lassa/complicações , Animais , Nervo Coclear/patologia , Surtos de Doenças , Orelha Interna/patologia , Perda Auditiva Neurossensorial/epidemiologia , Histocitoquímica , Humanos , Febre Lassa/epidemiologia , Vírus Lassa/isolamento & purificação , Camundongos , Microscopia , Serra Leoa/epidemiologia , Virulência
6.
J Virol ; 89(11): 5949-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25810546

RESUMO

UNLABELLED: The New World arenavirus Junin virus (JUNV) is the causative agent of Argentine hemorrhagic fever (AHF), a potentially deadly disease endemic to central regions of Argentina. The live-attenuated Candid #1 (Can) strain of JUNV is currently used to vaccinate the human population at risk. However, the mechanism of attenuation of this strain is still largely unknown. Therefore, the identification and functional characterization of viral genetic determinants dictating JUNV virulence or attenuation would significantly improve the understanding of the mechanisms underlying AHF and facilitate the development of novel, more effective, and safer vaccines. Here, we utilized a reverse genetics approach to generate recombinant JUNV (rJUNV) strains encoding different gene combinations of the pathogenic Romero (Rom) and attenuated Can strains of JUNV. All strains of rJUNV exhibited in vitro growth kinetics similar to those of their parental counterparts. Analysis of virulence of the rJUNV in a guinea pig model of lethal infection that closely reproduces the features of AHF identified the envelope glycoproteins (GPs) as the major determinants of pathogenesis and attenuation of JUNV. Accordingly, rJUNV strains expressing the full-length GPs of Rom and Can exhibited virulent and attenuated phenotypes, respectively, in guinea pigs. Mutation F427I in the transmembrane region of JUNV envelope glycoprotein GP2 has been shown to attenuate the neurovirulence of JUNV in suckling mice. We document that in the guinea pig model of AHF, mutation F427I in GP2 is also highly attenuating but insufficient to prevent virus dissemination and development of mild clinical and pathological symptoms, indicating that complete attenuation of JUNV requires additional mutations present in Can glycoprotein precursor (GPC). IMPORTANCE: Development of antiviral strategies against viral hemorrhagic fevers, including AHF, is one of the top priorities within the Implementation Plan of the U.S. Department of Health and Human Services Public Health Emergency Medical Countermeasures Enterprise. Live-attenuated Candid #1 strain, derived from the 44th mouse brain passage of the prototype XJ strain of JUNV, has been demonstrated to be safe, immunogenic, and highly protective and is currently licensed for human use in Argentina. However, the bases for the attenuated phenotype of Candid #1 have not been established. Therefore, the identification and functional characterization of viral genetic factors implicated in JUNV pathogenesis and attenuation would significantly improve the understanding of the molecular mechanisms underlying AHF and facilitate the development of novel antiviral strategies.


Assuntos
Glicoproteínas/metabolismo , Febre Hemorrágica Americana/virologia , Vírus Junin/fisiologia , Proteínas do Envelope Viral/metabolismo , Animais , Modelos Animais de Doenças , Glicoproteínas/genética , Cobaias , Febre Hemorrágica Americana/patologia , Vírus Junin/genética , Genética Reversa , Proteínas do Envelope Viral/genética , Virulência , Fatores de Virulência
7.
J Virol ; 87(19): 10908-11, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23903830

RESUMO

Lassa fever (LF) is a potentially lethal human disease that is caused by the arenavirus Lassa virus (LASV). Annually, around 300,000 infections with up to 10,000 deaths occur in regions of Lassa fever endemicity in West Africa. Here we demonstrate that mice lacking a functional STAT1 pathway are highly susceptible to infection with LASV and develop lethal disease with pathology similar to that reported in humans.


Assuntos
Febre Lassa/virologia , Vírus Lassa/patogenicidade , Fator de Transcrição STAT1/fisiologia , África Ocidental , Animais , Células Cultivadas , Chlorocebus aethiops , Humanos , Rim/metabolismo , Rim/virologia , Febre Lassa/genética , Febre Lassa/mortalidade , Camundongos , Camundongos Knockout , Receptor de Interferon alfa e beta/fisiologia , Taxa de Sobrevida , Células Vero
8.
J Virol ; 86(6): 3389-92, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22238311

RESUMO

Lassa virus (LASV) is the causative agent of Lassa hemorrhagic fever (LF) in humans, a deadly disease endemic to West Africa that results in 5,000 to 10,000 deaths annually. Here we present results demonstrating that functional type I and type II interferon (IFN) signaling is required for efficient control of LASV dissemination and clearance.


Assuntos
Interferons/imunologia , Febre Lassa/imunologia , Vírus Lassa/imunologia , Animais , Feminino , Humanos , Febre Lassa/virologia , Vírus Lassa/fisiologia , Masculino , Camundongos , Camundongos Knockout , Receptores de Interferon/genética , Receptores de Interferon/imunologia
9.
J Virol ; 85(4): 1473-83, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21123388

RESUMO

The New World arenavirus Junin virus (JUNV) is the causative agent of Argentine hemorrhagic fever (AHF), which is associated with high morbidity and significant mortality. Several pathogenic strains of JUNV have been documented, and a highly attenuated vaccine strain (Candid #1) was generated and used to vaccinate the human population at risk. The identification and functional characterization of viral genetic determinants associated with AHF and Candid #1 attenuation would contribute to the elucidation of the mechanisms contributing to AHF and the development of better vaccines and therapeutics. To this end, we used reverse genetics to rescue the pathogenic Romero and the attenuated Candid #1 strains of JUNV from cloned cDNAs. Both recombinant Candid #1 (rCandid #1) and Romero (rRomero) had the same growth properties and phenotypic features in cultured cells and in vivo as their corresponding parental viruses. Infection with rRomero caused 100% lethality in guinea pigs, whereas rCandid #1 infection was asymptomatic and provided protection against a lethal challenge with Romero. Notably, Romero and Candid #1 trans-acting proteins, L and NP, required for virus RNA replication and gene expression were exchangeable in a minigenome rescue assay. These findings support the feasibility of studies aimed at determining the contribution of each viral gene to JUNV pathogenesis and attenuation. In addition, we rescued Candid #1 viruses with three segments that efficiently expressed foreign genes introduced into their genomes. This finding opens the way for the development of a safe multivalent arenavirus vaccine.


Assuntos
DNA Complementar/genética , Febre Hemorrágica Americana/imunologia , Febre Hemorrágica Americana/patologia , Vírus Junin/patogenicidade , Recombinação Genética , Vacinas Atenuadas , Vacinas Virais , Animais , Anticorpos Antivirais/sangue , Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/patologia , Infecções por Arenaviridae/prevenção & controle , Infecções por Arenaviridae/virologia , Sequência de Bases , Linhagem Celular , Chlorocebus aethiops , Clonagem Molecular , Cricetinae , Feminino , Genótipo , Cobaias , Febre Hemorrágica Americana/prevenção & controle , Febre Hemorrágica Americana/virologia , Humanos , Imunização , Vírus Junin/genética , Vírus Junin/imunologia , Vírus Junin/fisiologia , Dados de Sequência Molecular , Fenótipo , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Células Vero , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia , Replicação Viral
10.
Vaccine ; 37(45): 6824-6831, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31561999

RESUMO

Lassa virus (LASV), the causative agent of Lassa fever (LF), was first identified in 1969. Since then, outbreaks in the endemic countries of Nigeria, Liberia, and Sierra Leone occur on an annual basis resulting in a case-fatality rate of 15-70% in hospitalized patients. There is currently no licensed vaccine and there are limited animal models to test vaccine efficacy. An estimated 37.7 million people are at risk of contracting LASV; therefore, there is an urgent need for the development of a safe, effective vaccine against LASV infection. The LF endemic countries are also inflicted with HIV, Ebola, and malaria infections. The safety in immunocompromised populations must be considered in LASV vaccine development. The novel adenovirus vector-based platform, Ad5 (E1-,E2b-) has been used in clinical trial protocols for treatment of immunocompromised individuals, has been shown to exhibit high stability, low safety risk in humans, and induces a strong cell-mediated and pro-inflammatory immune response even in the presence of pre-existing adenovirus immunity. To this nature, our lab has developed an Ad5 (E1-,E2b-) vector-based vaccine expressing the LASV-NP or LASV-GPC. We found that guinea pigs vaccinated with two doses of Ad5 (E1-,E2b-) LASV-NP and Ad5 (E1-,E2b-) LASV-GPC were protected against lethal LASV challenge. The Ad5 (E1-,E2b-) LASV-NP and LASV-GPC vaccine represents a potential vaccine candidate against LF.


Assuntos
Adenoviridae/genética , Vetores Genéticos/genética , Febre Lassa/imunologia , Febre Lassa/prevenção & controle , Vacinas Virais/uso terapêutico , Animais , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática , Feminino , Cobaias , Vírus Lassa/imunologia , Vírus Lassa/patogenicidade , Células Vero , Vacinas Virais/imunologia
11.
Artigo em Inglês | MEDLINE | ID: mdl-28220142

RESUMO

Junin virus (JUNV), a highly pathogenic New World arenavirus, is the causative agent of Argentine hemorrhagic fever (AHF). The live-attenuated Candid #1 (Can) strain currently serves as a vaccine for at-risk populations. We have previously shown that the Can glycoprotein (GPC) gene is the primary gene responsible for attenuation in a guinea pig model of AHF. However, the mechanisms through which the GPC contributes to the attenuation of the Can strain remain unknown. A more complete understanding of the mechanisms underlying the attenuation and immunogenicity of the Can strain will potentially allow for the rational design of additional safe and novel vaccines. Here, we provide a detailed comparison of both RNA and protein expression profiles between both inter- and intra-segment chimeric JUNV recombinant clones expressing combinations of genes from the Can strain and the pathogenic Romero (Rom) strain. The recombinant viruses that express Can GPC, which were shown to be attenuated in guinea pigs, displayed different RNA levels and GPC processing patterns as determined by Northern and Western blot analyses, respectively. Analysis of recombinant viruses containing amino acid substitutions selected at different mouse brain passages during the generation of Can revealed that altered Can GPC processing was primarily due to the T168A substitution within G1, which eliminates an N-linked glycosylation motif. Incorporation of the T168A substitution in the Rom GPC resulted in a Can-like processing pattern of Rom GPC. In addition, JUNV GPCs containing T168A substitution were retained within the endoplasmic reticulum (ER) and displayed significantly lower cell surface expression than wild-type Rom GPC. Interestingly, the reversion A168T in Can GPC significantly increased GPC expression at the cell surface. Our results demonstrate that recombinant JUNV (rJUNV) expressing Can GPC display markedly different protein expression and elevated genomic RNA expression when compared to viruses expressing Rom GPC. Additionally, our findings indicate that the N-linked glycosylation motif at amino acid positions 166-168 is important for trafficking of JUNV GPC to the cell surface, and the elimination of this motif interferes with the GPC release from the ER.


Assuntos
Motivos de Aminoácidos , Arenavirus do Novo Mundo/imunologia , Glicoproteínas/genética , Glicoproteínas/metabolismo , Febre Hemorrágica Americana , Vacinas Virais , Animais , Arenavirus do Novo Mundo/genética , Linhagem Celular , Células Cultivadas , Cricetinae , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Expressão Gênica , Regulação Viral da Expressão Gênica , Glicoproteínas/química , Glicoproteínas/imunologia , Glicosilação , Febre Hemorrágica Americana/imunologia , Febre Hemorrágica Americana/metabolismo , Febre Hemorrágica Americana/prevenção & controle , Febre Hemorrágica Americana/virologia , Humanos , Processamento de Proteína Pós-Traducional , Transporte Proteico , Transcrição Gênica , Vacinas Virais/genética , Vacinas Virais/imunologia , Virulência
12.
PLoS Negl Trop Dis ; 8(6): e2933, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24901990

RESUMO

The new world arenavirus Junín virus (JUNV) is the causative agent of Argentine hemorrhagic fever, a lethal human infectious disease. Adult laboratory mice are generally resistant to peripheral infection by JUNV. The mechanism underlying the mouse resistance to JUNV infection is largely unknown. We have reported that interferon receptor knockout mice succumb to JUNV infection, indicating the critical role of interferon in restricting JUNV infection in mice. Here we report that the pathogenic and vaccine strains of JUNV were highly sensitive to interferon in murine primary cells. Treatment with low concentrations of interferon abrogated viral NP protein expression in murine cells. The replication of both JUNVs was enhanced in IRF3/IRF7 deficient cells. In addition, the vaccine strain of JUNV displayed impaired growth in primary murine cells. Our data suggested a direct and potent role of host interferon response in restricting JUNV replication in mice. The defect in viral growth for vaccine JUNV might also partially explain its attenuation in mice.


Assuntos
Antivirais/farmacologia , Interferons/imunologia , Interferons/farmacologia , Vírus Junin/efeitos dos fármacos , Vírus Junin/imunologia , Animais , Células Cultivadas , Fator Regulador 3 de Interferon/deficiência , Fator Regulador 7 de Interferon/deficiência , Interferons/deficiência , Vírus Junin/crescimento & desenvolvimento , Vírus Junin/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Virais/biossíntese , Replicação Viral/efeitos dos fármacos
13.
PLoS Negl Trop Dis ; 6(5): e1659, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22629479

RESUMO

Junín virus (JUNV), an arenavirus, is the causative agent of Argentine hemorrhagic fever, an infectious human disease with 15-30% case fatality. The pathogenesis of AHF is still not well understood. Elevated levels of interferon and cytokines are reported in AHF patients, which might be correlated to the severity of the disease. However the innate immune response to JUNV infection has not been well evaluated. Previous studies have suggested that the virulent strain of JUNV does not induce IFN in human macrophages and monocytes, whereas the attenuated strain of JUNV was found to induce IFN response in murine macrophages via the TLR-2 signaling pathway. In this study, we investigated the interaction between JUNV and IFN pathway in human epithelial cells highly permissive to JUNV infection. We have determined the expression pattern of interferon-stimulated genes (ISGs) and IFN-ß at both mRNA and protein levels during JUNV infection. Our results clearly indicate that JUNV infection activates the type I IFN response. STAT1 phosphorylation, a downstream marker of activation of IFN signaling pathway, was readily detected in JUNV infected IFN-competent cells. Our studies also demonstrated for the first time that RIG-I was required for IFN production during JUNV infection. IFN activation was detected during infection by either the virulent or attenuated vaccine strain of JUNV. Curiously, both virus strains were relatively insensitive to human IFN treatment. Our studies collectively indicated that JUNV infection could induce host type I IFN response and provided new insights into the interaction between JUNV and host innate immune system, which might be important in future studies on vaccine development and antiviral treatment.


Assuntos
Infecções por Arenaviridae/imunologia , RNA Helicases DEAD-box/imunologia , Células Epiteliais/virologia , Febre Hemorrágica Americana/virologia , Interferon Tipo I/imunologia , Vírus Junin/imunologia , Linhagem Celular , Proteína DEAD-box 58 , Células Epiteliais/imunologia , Perfilação da Expressão Gênica , Humanos , Vírus Junin/patogenicidade , Fosforilação , Receptores Imunológicos , Fator de Transcrição STAT1/metabolismo
14.
Vaccine ; 28(30): 4713-8, 2010 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-20452431

RESUMO

Junin virus (JUNV) is the etiological agent of the potentially lethal, reemerging human disease, Argentine hemorrhagic fever (AHF). The mechanism of the disease development is not well understood and no antiviral therapy is available. Candid 1, a live-attenuated vaccine, has been developed by the US Army and is being used in the endemic area to prevent AHF. This vaccine is only approved for use in Argentina. In this study we have used the alphavirus-based approach to engineer a replicon system based on a human (United States Food and Drug Administration Investigational New Drug status) vaccine TC83 that express heterologous viral antigens, such as glycoproteins (GPC) of Junin virus (JUNV). Preclinical studies testing the immunogenicity and efficacy of TC83/GPC were performed in guinea pigs. A single dose of the live-attenuated alphavirus based vaccine expressing only GPC was immunogenic and provided partial protection, while a double dose of the same vaccine provided a complete protection against JUNV. This is the first scientific report to our knowledge that the immune response against GPC alone is sufficient to prevent lethal disease against JUNV in an animal model.


Assuntos
Infecções por Arenaviridae/imunologia , Infecções por Arenaviridae/prevenção & controle , Vírus Junin/genética , Vírus Junin/imunologia , Replicon/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/biossíntese , Infecções por Arenaviridae/virologia , Linhagem Celular , Chlorocebus aethiops , Cricetinae , DNA Viral/genética , DNA Viral/imunologia , Feminino , Vetores Genéticos , Glicoproteínas/química , Glicoproteínas/imunologia , Cobaias , Testes de Neutralização , Plasmídeos/imunologia , Análise de Sobrevida , Telemetria , Vacinas de DNA/imunologia , Células Vero , Carga Viral , Ensaio de Placa Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA