Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 286(6): 4703-17, 2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21123183

RESUMO

Bispecific antibodies (BsAbs) target multiple epitopes on the same molecular target or different targets. Although interest in BsAbs has persisted for decades, production of stable and active BsAbs has hindered their clinical evaluation. Here, we describe the production and characterization of tetravalent IgG-like BsAbs that combine the activities of allosteric and competitive inhibitors of the type-I insulin-like growth factor receptor (IGF-1R). The BsAbs, which were engineered for thermal stability, express well, demonstrate favorable biophysical properties, and recognize both epitopes on IGF-1R. Only one BsAb with a unique geometry, denoted BIIB4-5scFv, was capable of engaging all four of its binding arms simultaneously. All the BsAbs (especially BIIB4-5scFv) demonstrated enhanced ligand blocking over the single monoclonal antibodies (mAbs), particularly at high ligand concentrations. The pharmacokinetic profiles of two IgG-like BsAbs were tested in nude mice and shown to be comparable with that of the parental mAbs. The BsAbs, especially BIIB4-5scFv, demonstrated an improved ability to reduce the growth of multiple tumor cell lines and to inhibit ligand-induced IGF-1R signaling in tumor cells over the parental mAbs. BIIB4-5scFv also led to superior tumor growth inhibition over its parental mAbs in vivo. In summary, BsAbs that bridge multiple inhibitory mechanisms against a single target may generally represent a more effective strategy for intervention in oncology or other indications compared with traditional mAb therapy.


Assuntos
Anticorpos Biespecíficos/farmacocinética , Anticorpos Monoclonais Murinos/farmacocinética , Antineoplásicos/farmacocinética , Imunoglobulina G , Neoplasias Experimentais/tratamento farmacológico , Receptor IGF Tipo 1/antagonistas & inibidores , Animais , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Estabilidade de Medicamentos , Humanos , Ligantes , Camundongos , Camundongos Nus , Neoplasias Experimentais/imunologia , Estabilidade Proteica , Receptor IGF Tipo 1/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
2.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35260435

RESUMO

While most biological and cellular immunotherapies recognize extracellular targets, T cell receptor (TCR) therapeutics are unique in their ability to recognize the much larger pool of intracellular antigens found on virus-infected or cancerous cells. Recombinant T cell receptor (rTCR)-based therapeutics are gaining momentum both preclinically and clinically highlighted by recent positive phase III human clinical trial results for a TCR/CD3 bifunctional protein in uveal melanoma. Unlike antibody-based T cell engagers whose molecular formats have been widely and extensively evaluated, little data exist describing the putative activities of varied bifunctional formats using rTCRs. Here we generate rTCR/anti-CD3 bifunctionals directed toward NY-ESO-1 or MAGE-A3 with a variety of molecular formats. We show that inducing strong redirected lysis activity against tumors displaying either NY-ESO-1 or MAGE-A3 is highly restricted to small, tandem binding formats with an rTCR/antiCD3 Fab demonstrating the highest potency, rTCR/anti-CD3 single chain variable domain fragment showing similar but consistently weaker potency, and IgG-like or IgG-Fc-containing molecules demonstrating poor activity. We believe this is a universal trait of rTCR bifunctionals, given the canonical TCR/human leukocyte antigen structural paradigm.


Assuntos
Antígenos de Neoplasias , Antígeno HLA-A2 , Linhagem Celular Tumoral , Humanos , Imunoglobulina G , Receptores de Antígenos de Linfócitos T , Linfócitos T
3.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34253637

RESUMO

BACKGROUND: Bispecific T cell engagers represent the majority of bispecific antibodies (BsAbs) entering the clinic to treat metastatic cancer. The ability to apply these agents safely and efficaciously in the clinic, particularly for solid tumors, has been challenging. Many preclinical studies have evaluated parameters related to the activity of T cell engaging BsAbs, but many questions remain. MAIN BODY: This study investigates the impact of affinity of T cell engaging BsAbs with regards to potency, efficacy, and induction of immunomodulatory receptors/ligands using HER-2/CD3 BsAbs as a model system. We show that an IgG BsAb can be as efficacious as a smaller BsAb format both in vitro and in vivo. We uncover a dichotomous relationship between tumor-associated antigen (TAA) affinity and CD3 affinity requirements for cells that express high versus low levels of TAA. HER-2 affinity directly correlated with the CD3 engager lysis potency of HER-2/CD3 BsAbs when HER-2 receptor numbers are high (~200 K/cell), while the CD3 affinity did not impact potency until its binding affinity was extremely low (<600 nM). When HER-2 receptor numbers were lower (~20 K/cell), both HER-2 and CD3 affinity impacted potency. The high affinity anti-HER-2/low CD3 affinity BsAb also demonstrated lower cytokine induction levels in vivo and a dosing paradigm atypical of extremely high potency T cell engaging BsAbs reaching peak efficacy at doses >3 mg/kg. This data confirms that low CD3 affinity provides an opportunity for improved safety and dosing for T cell engaging BsAbs. T cell redirection also led to upregulation of Programmed cell death 1 (PD-1) and 4-1BB, but not CTLA-4 on T cells, and to Programmed death-ligand 1 (PD-L1) upregulation on HER-2HI SKOV3 tumor cells, but not on HER-2LO OVCAR3 tumor cells. Using this information, we combined anti-PD-1 or anti-4-1BB monoclonal antibodies with the HER-2/CD3 BsAb in vivo and demonstrated significantly increased efficacy against HER-2HI SKOV3 tumors via both combinations. CONCLUSIONS: Overall, these studies provide an informational dive into the optimization process of CD3 engaging BsAbs for solid tumors indicating that a reduced affinity for CD3 may enable a better therapeutic index with a greater selectivity for the target tumor and a reduced cytokine release syndrome. These studies also provide an additional argument for combining T cell checkpoint inhibition and co-stimulation to achieve optimal efficacy.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Linfócitos T/imunologia , Animais , Anticorpos Biespecíficos/farmacologia , Humanos , Camundongos
4.
Nat Commun ; 11(1): 2330, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393818

RESUMO

Recombinant T cell receptors (TCRs) can be used to redirect naïve T cells to eliminate virally infected or cancerous cells; however, they are plagued by low stability and uneven expression. Here, we use molecular modeling to identify mutations in the TCR constant domains (Cα/Cß) that increase the unfolding temperature of Cα/Cß by 20 °C, improve the expression of four separate α/ß TCRs by 3- to 10-fold, and improve the assembly and stability of TCRs with poor intrinsic stability. The stabilizing mutations rescue the expression of TCRs destabilized through variable domain mutation. The improved stability and folding of the TCRs reduces glycosylation, perhaps through conformational stabilization that restricts access to N-linked glycosylation enzymes. The Cα/Cß mutations enables antibody-like expression and assembly of well-behaved bispecific molecules that combine an anti-CD3 antibody with the stabilized TCR. These TCR/CD3 bispecifics can redirect T cells to kill tumor cells with target HLA/peptide on their surfaces in vitro.


Assuntos
Anticorpos Biespecíficos/imunologia , Biologia Computacional/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Biespecíficos/química , Varredura Diferencial de Calorimetria , Citotoxicidade Imunológica , Imunoglobulina G/metabolismo , Camundongos , Mutação/genética , Polissacarídeos/metabolismo , Desnaturação Proteica , Estabilidade Proteica , Subunidades Proteicas/metabolismo , Receptores de Antígenos de Linfócitos T/química , Proteínas Recombinantes/metabolismo , Solubilidade , Temperatura
5.
MAbs ; 7(2): 364-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25611120

RESUMO

Immunoglobulins and T cell receptors (TCRs) share common sequences and structures. With the goal of creating novel bispecific antibodies (BsAbs), we generated chimeric molecules, denoted IgG_TCRs, where the Fv regions of several antibodies were fused to the constant domains of the α/ß TCR. Replacing CH1 with Cα and CL with Cß, respectively, was essential for achieving at least partial heavy chain/light chain assembly. Further optimization of the linker regions between the variable and constant domains, as well as replacement of the large FG loop of Cß with a canonical ß-turn, was necessary to consistently obtain full heavy chain/light chain assembly. The optimized IgG_TCR molecules were evaluated biophysically and shown to maintain the binding properties of their parental antibodies. A few BsAbs were generated by co-expressing native Fabs and IgG_TCR Fabs within the same molecular construct. We demonstrate that the IgG_TCR designs steered each of the light chains within the constructs to specifically pair with their cognate heavy chain counterparts. We did find that even with complete constant domain specificity between the CH1/CL and Cα/Cß domains of the Fabs, strong variable domain interactions can dominate the pairing specificity and induce some mispairing. Overall, the IgG_TCR designs described here are a first step toward the generation of novel BsAbs that may be directed toward the treatment of multi-faceted and complex diseases.


Assuntos
Anticorpos Biespecíficos , Fragmentos Fab das Imunoglobulinas , Imunoglobulina G , Engenharia de Proteínas , Receptores de Antígenos de Linfócitos T alfa-beta , Proteínas Recombinantes de Fusão , Anticorpos Biespecíficos/biossíntese , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/genética , Células HEK293 , Humanos , Fragmentos Fab das Imunoglobulinas/biossíntese , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Imunoglobulina G/biossíntese , Imunoglobulina G/química , Imunoglobulina G/genética , Receptores de Antígenos de Linfócitos T alfa-beta/biossíntese , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
6.
MAbs ; 7(3): 470-82, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774965

RESUMO

A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.


Assuntos
Anticorpos Biespecíficos , Proteínas Recombinantes de Fusão , Anticorpos de Cadeia Única , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Linhagem Celular Tumoral , Humanos , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
7.
Nat Biotechnol ; 32(2): 191-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24463572

RESUMO

Robust generation of IgG bispecific antibodies has been a long-standing challenge. Existing methods require extensive engineering of each individual antibody, discovery of common light chains, or complex and laborious biochemical processing. Here we combine computational and rational design approaches with experimental structural validation to generate antibody heavy and light chains with orthogonal Fab interfaces. Parental monoclonal antibodies incorporating these interfaces, when simultaneously co-expressed, assemble into bispecific IgG with improved heavy chain-light chain pairing. Bispecific IgGs generated with this approach exhibit pharmacokinetic and other desirable properties of native IgG, but bind target antigens monovalently. As such, these bispecific reagents may be useful in many biotechnological applications.


Assuntos
Anticorpos Biespecíficos/química , Fragmentos Fab das Imunoglobulinas/química , Imunoglobulina G/química , Engenharia de Proteínas/métodos , Animais , Anticorpos Biespecíficos/metabolismo , Biotecnologia , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Masculino , Camundongos , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
8.
MAbs ; 3(3): 273-88, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21393993

RESUMO

The epidermal growth factor receptor (EGFR) and the type I insulin-like growth factor receptor (IGF-1R) are two cell surface receptor tyrosine kinases known to cooperate to promote tumor progression and drug resistance. Combined blockade of EGFR and IGF-1R has shown improved anti-tumor activity in preclinical models. Here, we report the characterization of a stable IgG-like bispecific antibody (BsAb) dual-targeting EGFR and IGF-1R that was developed for cancer therapy. The BsAb molecule (EI-04), constructed with a stability-engineered single chain variable fragment (scFv) against IGF-1R attached to the carboxyl-terminus of an IgG against EGFR, displays favorable biophysical properties for biopharmaceutical development. Biochemically, EI-04 bound to human EGFR and IGF-1R with sub nanomolar affinity, co-engaged the two receptors simultaneously, and blocked the binding of their respective ligands with similar potency compared to the parental monoclonal antibodies (mAbs). In tumor cells, EI-04 effectively inhibited EGFR and IGF-1R phosphorylation, and concurrently blocked downstream AKT and ERK activation, resulting in greater inhibition of tumor cell growth and cell cycle progression than the single mAbs. EI-04, likely due to its tetravalent bispecific format, exhibited high avidity binding to BxPC3 tumor cells co-expressing EGFR and IGF-1R, and consequently improved potency at inhibiting IGF-driven cell growth over the mAb combination. Importantly, EI-04 demonstrated enhanced in vivo anti-tumor efficacy over the parental mAbs in two xenograft models, and even over the mAb combination in the BxPC3 model. Our data support the clinical investigation of EI-04 as a superior cancer therapeutic in treating EGFR and IGF-1R pathway responsive tumors.


Assuntos
Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/imunologia , Receptores ErbB/imunologia , Neoplasias/imunologia , Receptor IGF Tipo 1/imunologia , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais/farmacologia , Afinidade de Anticorpos/imunologia , Especificidade de Anticorpos/imunologia , Western Blotting , Células CHO , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Receptores ErbB/metabolismo , Humanos , Imunoglobulina G/imunologia , Camundongos , Camundongos Nus , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilação/efeitos dos fármacos , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Mol Cancer Ther ; 9(9): 2593-604, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20716637

RESUMO

The insulin-like growth factor-I receptor (IGF-IR) is a cell surface receptor tyrosine kinase that mediates cell survival signaling and supports tumor progression in multiple tumor types. We identified a spectrum of inhibitory IGF-IR antibodies with diverse binding epitopes and ligand-blocking properties. By binding distinct inhibitory epitopes, two of these antibodies, BIIB4 and BIIB5, block both IGF-I and IGF-II binding to IGF-IR using competitive and allosteric mechanisms, respectively. Here, we explored the inhibitory effects of combining BIIB4 and BIIB5. In biochemical assays, the combination of BIIB4 and BIIB5 improved both the potency and extent of IGF-I and IGF-II blockade compared with either antibody alone. In tumor cells, the combination of BIIB4 and BIIB5 accelerated IGF-IR downregulation and more efficiently inhibited IGF-IR activation as well as downstream signaling, particularly AKT phosphorylation. In several carcinoma cell lines, the antibody combination more effectively inhibited ligand-driven cell growth than either BIIB4 or BIIB5 alone. Notably, the enhanced tumor growth-inhibitory activity of the BIIB4 and BIIB5 combination was much more pronounced at high ligand concentrations, where the individual antibodies exhibited substantially reduced activity. Compared with single antibodies, the BIIB4 and BIIB5 combination also significantly further enhanced the antitumor activity of the epidermal growth factor receptor inhibitor erlotinib and the mTOR inhibitor rapamycin. Moreover, in osteosarcoma and hepatocellular carcinoma xenograft models, the BIIB4 and BIIB5 combination significantly reduced tumor growth to a greater degree than each single antibody. Taken together, our results suggest that targeting multiple distinct inhibitory epitopes on IGF-IR may be a more effective strategy of affecting the IGF-IR pathway in cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Animais , Anticorpos Monoclonais/imunologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/imunologia , Neoplasias Ósseas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Epitopos/imunologia , Feminino , Células Hep G2 , Humanos , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like II/antagonistas & inibidores , Fator de Crescimento Insulin-Like II/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Nus , Terapia de Alvo Molecular/métodos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/imunologia , Osteossarcoma/patologia , Receptor IGF Tipo 1/imunologia , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
10.
J Biol Chem ; 284(15): 10254-67, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19211557

RESUMO

Therapeutic antibodies directed against the type 1 insulin-like growth factor receptor (IGF-1R) have recently gained significant momentum in the clinic because of preliminary data generated in human patients with cancer. These antibodies inhibit ligand-mediated activation of IGF-1R and the resulting down-stream signaling cascade. Here we generated a panel of antibodies against IGF-1R and screened them for their ability to block the binding of both IGF-1 and IGF-2 at escalating ligand concentrations (>1 microm) to investigate allosteric versus competitive blocking mechanisms. Four distinct inhibitory classes were found as follows: 1) allosteric IGF-1 blockers, 2) allosteric IGF-2 blockers, 3) allosteric IGF-1 and IGF-2 blockers, and 4) competitive IGF-1 and IGF-2 blockers. The epitopes of representative antibodies from each of these classes were mapped using a purified IGF-1R library containing 64 mutations. Most of these antibodies bound overlapping surfaces on the cysteine-rich repeat and L2 domains. One class of allosteric IGF-1 and IGF-2 blocker was identified that bound a separate epitope on the outer surface of the FnIII-1 domain. Using various biophysical techniques, we show that the dual IGF blockers inhibit ligand binding using a spectrum of mechanisms ranging from highly allosteric to purely competitive. Binding of IGF-1 or the inhibitory antibodies was associated with conformational changes in IGF-1R, linked to the ordering of dynamic or unstructured regions of the receptor. These results suggest IGF-1R uses disorder/order within its polypeptide sequence to regulate its activity. Interestingly, the activity of representative allosteric and competitive inhibitors on H322M tumor cell growth in vitro was reflective of their individual ligand-blocking properties. Many of the antibodies in the clinic likely adopt one of the inhibitory mechanisms described here, and the outcome of future clinical studies may reveal whether a particular inhibitory mechanism leads to optimal clinical efficacy.


Assuntos
Epitopos/química , Receptores de Somatomedina/química , Sítio Alostérico , Animais , Células CHO , Varredura Diferencial de Calorimetria , Cricetinae , Cricetulus , Mapeamento de Epitopos , Humanos , Fator de Crescimento Insulin-Like II/química , Cinética , Ligantes , Conformação Molecular , Receptor IGF Tipo 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA