Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(3)2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30696040

RESUMO

The micro RNA (miR)-34 family is composed of 5p and 3p strands of miR-34a, miR-34b, and miR-34c. The 5p strand's expression and function is studied in cervical cancer. The 3p strand's function and regulation remain to be elucidated. To study the function of the passenger strands of miR-34 family members, we overexpressed 5p and 3p strands using a synthetic miRNA in cervical cell lines. Cell proliferation was evaluated using crystal violet. Migration and invasion were tested using transwell assays, Western blot, and zymography. Possible specific targets and cell signaling were investigated for each strand. We found that miR-34a-5p inhibited proliferation, migration, and cell invasion accompanied by matrix metalloproteinase 9 (MMP9) activity and microtubule-associated protein 2 (MAP2) protein reduction. We also found that miR-34b-5p and miR-34c-5p inhibit proliferation and migration, but not invasion. In contrast, miR-34c-5p inhibits MMP9 activity and MAP2 protein, while miR-34b-5p has no effect on these genes. Furthermore, miR-34a-3p and miR-34b-3p inhibit proliferation and migration, but not invasion, despite the later reducing MMP2 activity, while miR-34c-3p inhibit proliferation, migration, and cell invasion accompanied by MMP9 activity and MAP2 protein inhibition. The difference in cellular processes, MMP2 and MMP9 activity, and MAP2 protein inhibition by miR-34 family members suggests the participation of other regulated genes. This study provides insights into the roles of passenger strands (strand*) of the miR-34 family in cervical cancer.


Assuntos
Movimento Celular/genética , MicroRNAs/metabolismo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Simulação por Computador , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , Invasividade Neoplásica
2.
Int J Mol Sci ; 18(2)2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28216603

RESUMO

Aberrant miRNA expression is well recognized as a cancer hallmark, nevertheless miRNA function and expression does not always correlate in patients tissues and cell lines studies. In addition to this issue, miRNA strand usage conduces to increased cell signaling pathways modulation diversifying cellular processes regulation. In cervical cancer, 20 miRNA families are involved in carcinogenesis induction and development to this moment. These families have 5p and 3p strands with different nucleotide (nt) chain sizes. In general, mature 5p strands are larger: two miRNAs of 24 nt, 24 miRNAs of 23 nt, 35 miRNAs of 22 nt and three miRNAs of 21 nt. On the other hand, the 3p strands lengths observed are: seven miRNAs of 23 nt, 50 miRNAs of 22 nt, six miRNAs of 21 nt and four miRNAs of 20 nt. Based on the analysis of the 20 miRNA families associated with cervical cancer, 67 3p strands and 65 5p strands are selected suggesting selectivity and specificity mechanisms regulating cell processes like proliferation, apoptosis, migration, invasion, metabolism and Warburg effect. The insight reviewed here could be used in the miRNA based therapy, diagnosis and prognosis approaches.


Assuntos
Transformação Celular Neoplásica/genética , MicroRNAs/genética , Família Multigênica , Neoplasias do Colo do Útero/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Humanos , MicroRNAs/química , Oncogenes , Interferência de RNA
3.
Int J Mol Sci ; 16(6): 12773-90, 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26057746

RESUMO

Tumor cells have developed advantages to acquire hallmarks of cancer like apoptosis resistance, increased proliferation, migration, and invasion through cell signaling pathway misregulation. The sequential activation of genes in a pathway is regulated by miRNAs. Loss or gain of miRNA expression could activate or repress a particular cell axis. It is well known that aberrant miRNA expression is well recognized as an important step in the development of cancer. Individual miRNA expression is reported without considering that miRNAs are grouped in clusters and may have similar functions, such as the case of clusters with anti-oncomiRs (23b~27b~24-1, miR-29a~29b-1, miR-29b-2~29c, miR-99a~125b-2, miR-99b~125a, miR-100~125b-1, miR-199a-2~214, and miR-302s) or oncomiRs activity (miR-1-1~133a-2, miR-1-2~133a-1, miR-133b~206, miR-17~92, miR-106a~363, miR183~96~182, miR-181a-1~181b-1, and miR-181a-2~181b-2), which regulated mitogen-activated protein kinases (MAPK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), NOTCH, proteasome-culling rings, and apoptosis cell signaling. In this work we point out the pathways regulated by families of miRNAs grouped in 20 clusters involved in cervical cancer. Reviewing how miRNA families expressed in cluster-regulated cell path signaling will increase the knowledge of cervical cancer progression, providing important information for therapeutic, diagnostic, and prognostic methodology design.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Transdução de Sinais , Neoplasias do Colo do Útero/metabolismo , Feminino , Humanos , Neoplasias do Colo do Útero/genética
4.
Drug Discov Today ; 23(4): 864-870, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29317340

RESUMO

Cutaneous squamous cell carcinoma (cSCC) is a keratinocyte-derived skin tumor. It is the second-most-common cancer affecting the Caucasian population and is responsible for >20% of all skin-cancer-related deaths. The estimated incidence of non-melanoma skin cancer in the USA is >1000000 cases per year, of which roughly 20-30% are squamous cell carcinoma. To better understand and treat this challenging cancer, current research focuses on development of novel strategies to improve the understanding of tumor biogenesis on an individual basis. microRNAs are becoming important biomarkers in the diagnosis, prognosis and treatment of cSCC. This review describes the current knowledge on miRNA expression in cSCC and its role as a biomarker for personalized medicine.


Assuntos
Carcinoma de Células Escamosas/genética , MicroRNAs/genética , Neoplasias Cutâneas/genética , Animais , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/patologia , Humanos , Prognóstico , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA