Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38857538

RESUMO

The fidelity of genetic information is essential for cellular function and viability. DNA double-strand breaks (DSBs) pose a significant threat to genome integrity, necessitating efficient repair mechanisms. While the predominant repair strategies are usually accurate, paradoxically, error-prone pathways also exist. This review explores recent advances and our understanding of microhomology-mediated end joining (MMEJ), an intrinsically mutagenic DSB repair pathway conserved across organisms. Central to MMEJ is the activity of DNA polymerase theta (Polθ), a specialized polymerase that fuels MMEJ mutagenicity. We examine the molecular intricacies underlying MMEJ activity and discuss its function during mitosis, where the activity of Polθ emerges as a last-ditch effort to resolve persistent DSBs, especially when homologous recombination is compromised. We explore the promising therapeutic applications of targeting Polθ in cancer treatment and genome editing. Lastly, we discuss the evolutionary consequences of MMEJ, highlighting its delicate balance between protecting genome integrity and driving genomic diversity.

2.
Cell ; 185(5): 755-758, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245477

RESUMO

Support for basic science has been eclipsed by initiatives aimed at specific medical problems. The latest example is the dismantling of the Skirball Institute at NYU School of Medicine. Here, we reflect on the achievements and mission underlying the Skirball to gain insight into the dividends of maintaining a basic science vision within the academic enterprises.


Assuntos
Academias e Institutos , Pesquisa Biomédica , Faculdades de Medicina
3.
Mol Cell ; 83(20): 3740-3753.e9, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37832546

RESUMO

Mitochondrial DNA double-strand breaks (mtDSBs) lead to the degradation of circular genomes and a reduction in copy number; yet, the cellular response in human cells remains elusive. Here, using mitochondrial-targeted restriction enzymes, we show that a subset of cells with mtDSBs exhibited defective mitochondrial protein import, reduced respiratory complexes, and loss of membrane potential. Electron microscopy confirmed the altered mitochondrial membrane and cristae ultrastructure. Intriguingly, mtDSBs triggered the integrated stress response (ISR) via the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by DELE1 and heme-regulated eIF2α kinase (HRI). When ISR was inhibited, the cells experienced intensified mitochondrial defects and slower mtDNA recovery post-breakage. Lastly, through proteomics, we identified ATAD3A-a membrane-bound protein interacting with nucleoids-as potentially pivotal in relaying signals from impaired genomes to the inner mitochondrial membrane. In summary, our study delineates the cascade connecting damaged mitochondrial genomes to the cytoplasm and highlights the significance of the ISR in maintaining mitochondrial homeostasis amid genome instability.


Assuntos
Mitocôndrias , eIF-2 Quinase , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , eIF-2 Quinase/metabolismo , Citoplasma/metabolismo , Fosforilação , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
4.
Genes Dev ; 36(5-6): 313-330, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210222

RESUMO

In mammals, the conserved telomere binding protein Rap1 serves a diverse set of nontelomeric functions, including activation of the NF-kB signaling pathway, maintenance of metabolic function in vivo, and transcriptional regulation. Here, we uncover the mechanism by which Rap1 modulates gene expression. Using a separation-of-function allele, we show that Rap1 transcriptional regulation is largely independent of TRF2-mediated binding to telomeres and does not involve direct binding to genomic loci. Instead, Rap1 interacts with the TIP60/p400 complex and modulates its histone acetyltransferase activity. Notably, we show that deletion of Rap1 in mouse embryonic stem cells increases the fraction of two-cell-like cells. Specifically, Rap1 enhances the repressive activity of Tip60/p400 across a subset of two-cell-stage genes, including Zscan4 and the endogenous retrovirus MERVL. Preferential up-regulation of genes proximal to MERVL elements in Rap1-deficient settings implicates these endogenous retroviral elements in the derepression of proximal genes. Altogether, our study reveals an unprecedented link between Rap1 and the TIP60/p400 complex in the regulation of pluripotency.


Assuntos
Proteínas de Ligação a Telômeros , Telômero , Animais , Regulação da Expressão Gênica , Genoma , Mamíferos/genética , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
5.
Mol Cell ; 81(11): 2349-2360.e6, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33852895

RESUMO

Telomere length control is critical for cellular lifespan and tumor suppression. Telomerase is transiently activated in the inner cell mass of the developing blastocyst to reset telomere reserves. Its silencing upon differentiation leads to gradual telomere shortening in somatic cells. Here, we report that transcriptional regulation through cis-regulatory elements only partially accounts for telomerase activation in pluripotent cells. Instead, developmental control of telomerase is primarily driven by an alternative splicing event, centered around hTERT exon 2. Skipping of exon 2 triggers hTERT mRNA decay in differentiated cells, and conversely, its retention promotes telomerase accumulation in pluripotent cells. We identify SON as a regulator of exon 2 alternative splicing and report a patient carrying a SON mutation and suffering from insufficient telomerase and short telomeres. In summary, our study highlights a critical role for hTERT alternative splicing in the developmental regulation of telomerase and implicates defective splicing in telomere biology disorders.


Assuntos
Processamento Alternativo , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Antígenos de Histocompatibilidade Menor/genética , Telomerase/genética , Homeostase do Telômero , Telômero/metabolismo , Blastocisto/metabolismo , Blastocisto/patologia , Diferenciação Celular , Pré-Escolar , Proteínas de Ligação a DNA/deficiência , Feminino , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Embrionárias Humanas/patologia , Humanos , Linhagem , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Cultura Primária de Células , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Telomerase/deficiência , Telômero/patologia
6.
Nat Rev Mol Cell Biol ; 17(6): 364-78, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27165790

RESUMO

Mammalian cells have evolved specialized mechanisms to sense and repair double-strand breaks (DSBs) to maintain genomic stability. However, in certain cases, the activity of these pathways can lead to aberrant DNA repair, genomic instability and tumorigenesis. One such case is DNA repair at the natural ends of linear chromosomes, known as telomeres, which can lead to chromosome-end fusions. Here, we review data obtained over the past decade and discuss the mechanisms that protect mammalian chromosome ends from the DNA damage response. We also discuss how telomere research has helped to uncover key steps in DSB repair. Last, we summarize how dysfunctional telomeres and the ensuing genomic instability drive the progression of cancer.


Assuntos
Reparo do DNA , Telômero/genética , Animais , Quebras de DNA de Cadeia Dupla , Instabilidade Genômica , Humanos , Transdução de Sinais , Homeostase do Telômero
7.
Mol Cell ; 79(1): 115-126.e6, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32497497

RESUMO

Extension of telomeres is a critical step in the immortalization of cancer cells. This complex reaction requires proper spatiotemporal coordination of telomerase and telomeres and remains poorly understood at the cellular level. To understand how cancer cells execute this process, we combine CRISPR genome editing and MS2 RNA tagging to image single molecules of telomerase RNA (hTR). Real-time dynamics and photoactivation experiments of hTR in Cajal bodies (CBs) reveal that hTERT controls the exit of hTR from CBs. Single-molecule tracking of hTR at telomeres shows that TPP1-mediated recruitment results in short telomere-telomerase scanning interactions, and then base pairing between hTR and telomere ssDNA promotes long interactions required for stable telomerase retention. Interestingly, POT1 OB-fold mutations that result in abnormally long telomeres in cancers act by enhancing this retention step. In summary, single-molecule imaging unveils the life cycle of telomerase RNA and provides a framework to reveal how cancer-associated mutations mechanistically drive defects in telomere homeostasis.


Assuntos
Corpos Enovelados/metabolismo , DNA de Cadeia Simples/metabolismo , RNA/metabolismo , Imagem Individual de Molécula/métodos , Telomerase/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA de Cadeia Simples/genética , Edição de Genes , Células HeLa , Humanos , Mutação , RNA/genética , Complexo Shelterina , Telomerase/genética , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo
8.
Genes Dev ; 34(23-24): 1619-1636, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33122293

RESUMO

Mutations in the telomere-binding protein POT1 are associated with solid tumors and leukemias. POT1 alterations cause rapid telomere elongation, ATR kinase activation, telomere fragility, and accelerated tumor development. Here, we define the impact of mutant POT1 alleles through complementary genetic and proteomic approaches based on CRISPR interference and biotin-based proximity labeling, respectively. These screens reveal that replication stress is a major vulnerability in cells expressing mutant POT1, which manifests as increased telomere mitotic DNA synthesis at telomeres. Our study also unveils a role for the nuclear pore complex in resolving replication defects at telomeres. Depletion of nuclear pore complex subunits in the context of POT1 dysfunction increases DNA damage signaling, telomere fragility and sister chromatid exchanges. Furthermore, we observed telomere repositioning to the nuclear periphery driven by nuclear F-actin polymerization in cells with POT1 mutations. In conclusion, our study establishes that relocalization of dysfunctional telomeres to the nuclear periphery is critical to preserve telomere repeat integrity.


Assuntos
Replicação do DNA/genética , Poro Nuclear/patologia , Proteínas de Ligação a Telômeros/genética , Telômero/genética , Linhagem Celular Tumoral , Dano ao DNA/genética , Humanos , Mitose/genética , Mutação , Neoplasias/genética , Neoplasias/fisiopatologia , Complexo Shelterina , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo
9.
Nature ; 591(7850): 477-481, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33627873

RESUMO

Mitochondrial DNA double-strand breaks (mtDSBs) are toxic lesions that compromise the integrity of mitochondrial DNA (mtDNA) and alter mitochondrial function1. Communication between mitochondria and the nucleus is essential to maintain cellular homeostasis; however, the nuclear response to mtDSBs remains unknown2. Here, using mitochondrial-targeted transcription activator-like effector nucleases (TALENs)1,3,4, we show that mtDSBs activate a type-I interferon response that involves the phosphorylation of STAT1 and activation of interferon-stimulated genes. After the formation of breaks in the mtDNA, herniation5 mediated by BAX and BAK releases mitochondrial RNA into the cytoplasm and triggers a RIG-I-MAVS-dependent immune response. We further investigated the effect of mtDSBs on interferon signalling after treatment with ionizing radiation and found a reduction in the activation of interferon-stimulated genes when cells that lack mtDNA are exposed to gamma irradiation. We also show that mtDNA breaks synergize with nuclear DNA damage to mount a robust cellular immune response. Taken together, we conclude that cytoplasmic accumulation of mitochondrial RNA is an intrinsic immune surveillance mechanism for cells to cope with mtDSBs, including breaks produced by genotoxic agents.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Mitocondrial/imunologia , Imunidade Inata/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Células Cultivadas , Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA Mitocondrial/efeitos da radiação , Humanos , Mitocôndrias/imunologia , Mitocôndrias/efeitos da radiação , Comunicação Parácrina , Radiação Ionizante , Transcrição Gênica , Ubiquitina-Proteína Ligases/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
10.
Mol Cell ; 65(3): 527-538.e6, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28111015

RESUMO

Mutations in mtDNA lead to muscular and neurological diseases and are linked to aging. The most frequent aberrancy is the "common deletion" that involves a 4,977-bp region flanked by 13-bp repeats. To investigate the basis of this deletion, we developed a single-molecule mtDNA combing method. The analysis of replicating mtDNA molecules provided in vivo evidence in support of the asymmetric mode of replication. Furthermore, we observed frequent fork stalling at the junction of the common deletion, suggesting that impaired replication triggers the formation of this toxic lesion. In parallel experiments, we employed mito-TALENs to induce breaks in distinct loci of the mitochondrial genome and found that breaks adjacent to the 5' repeat trigger the common deletion. Interestingly, this process was mediated by the mitochondrial replisome independent of canonical DSB repair. Altogether, our data underscore a unique replication-dependent repair pathway that leads to the mitochondrial common deletion.


Assuntos
Replicação do DNA , DNA Mitocondrial/metabolismo , Deleção de Sequência , Imagem Individual de Molécula/métodos , Envelhecimento/genética , DNA Helicases/genética , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição/metabolismo
11.
Cell ; 138(1): 90-103, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19596237

RESUMO

Telomeres protect chromosome ends through the interaction of telomeric repeats with shelterin, a protein complex that represses DNA damage signaling and DNA repair reactions. The telomeric repeats are maintained by telomerase, which solves the end replication problem. We report that the TTAGGG repeat arrays of mammalian telomeres pose a challenge to the DNA replication machinery, giving rise to replication-dependent defects that resemble those of aphidicolin-induced common fragile sites. Gene deletion experiments showed that efficient duplication of telomeres requires the shelterin component TRF1. Without TRF1, telomeres activate the ATR kinase in S phase and show a fragile-site phenotype in metaphase. Single-molecule analysis of replicating telomeres showed that TRF1 promotes efficient replication of TTAGGG repeats and prevents fork stalling. Two helicases implicated in the removal of G4 DNA structures, BLM and RTEL1, were required to repress the fragile-telomere phenotype. These results identify a second telomere replication problem that is solved by the shelterin component TRF1.


Assuntos
Sítios Frágeis do Cromossomo , Replicação do DNA , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Animais , Afidicolina , Cromossomos de Mamíferos/metabolismo , Humanos , Metáfase , Camundongos , Proteína 1 de Ligação a Repetições Teloméricas/genética
12.
Cell ; 138(3): 463-75, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19665970

RESUMO

Telomeres are thought to be maintained by the preferential recruitment of telomerase to the shortest telomeres. The extension of the G-rich telomeric strand by telomerase is also believed to be coordinated with the complementary synthesis of the C strand by the conventional replication machinery. However, we show that under telomere length-maintenance conditions in cancer cells, human telomerase extends most chromosome ends during each S phase and is not preferentially recruited to the shortest telomeres. Telomerase rapidly extends the G-rich strand following telomere replication but fill-in of the C strand is delayed into late S phase. This late C-strand fill-in is not executed by conventional Okazaki fragment synthesis but by a mechanism using a series of small incremental steps. These findings highlight differences between telomerase actions during steady state versus nonequilibrium conditions and reveal steps in the human telomere maintenance pathway that may provide additional targets for the development of anti-telomerase therapeutics.


Assuntos
Telomerase/metabolismo , Telômero/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Células HeLa , Humanos , Fase S , Saccharomyces cerevisiae/enzimologia
13.
Nature ; 518(7538): 254-7, 2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25642960

RESUMO

The alternative non-homologous end-joining (NHEJ) machinery facilitates several genomic rearrangements, some of which can lead to cellular transformation. This error-prone repair pathway is triggered upon telomere de-protection to promote the formation of deleterious chromosome end-to-end fusions. Using next-generation sequencing technology, here we show that repair by alternative NHEJ yields non-TTAGGG nucleotide insertions at fusion breakpoints of dysfunctional telomeres. Investigating the enzymatic activity responsible for the random insertions enabled us to identify polymerase theta (Polθ; encoded by Polq in mice) as a crucial alternative NHEJ factor in mammalian cells. Polq inhibition suppresses alternative NHEJ at dysfunctional telomeres, and hinders chromosomal translocations at non-telomeric loci. In addition, we found that loss of Polq in mice results in increased rates of homology-directed repair, evident by recombination of dysfunctional telomeres and accumulation of RAD51 at double-stranded breaks. Lastly, we show that depletion of Polθ has a synergistic effect on cell survival in the absence of BRCA genes, suggesting that the inhibition of this mutagenic polymerase represents a valid therapeutic avenue for tumours carrying mutations in homology-directed repair genes.


Assuntos
Cromossomos de Mamíferos/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , DNA Polimerase Dirigida por DNA/metabolismo , Recombinação Genética , Telômero/genética , Telômero/metabolismo , Animais , Sequência de Bases , Morte Celular/genética , Linhagem Celular , Aberrações Cromossômicas , Cromossomos de Mamíferos/genética , DNA Polimerase Dirigida por DNA/deficiência , Genes BRCA1 , Genes BRCA2 , Células HeLa , Humanos , Camundongos , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Rad51 Recombinase/metabolismo , Recombinação Genética/genética , Reparo de DNA por Recombinação/genética , Translocação Genética/genética , DNA Polimerase teta
14.
Trends Biochem Sci ; 40(11): 701-714, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26439531

RESUMO

DNA double-strand breaks (DSBs) disrupt the continuity of chromosomes and their repair by error-free mechanisms is essential to preserve genome integrity. Microhomology-mediated end joining (MMEJ) is an error-prone repair mechanism that involves alignment of microhomologous sequences internal to the broken ends before joining, and is associated with deletions and insertions that mark the original break site, as well as chromosome translocations. Whether MMEJ has a physiological role or is simply a back-up repair mechanism is a matter of debate. Here we review recent findings pertaining to the mechanism of MMEJ and discuss its role in normal and cancer cells.


Assuntos
Reparo do DNA por Junção de Extremidades , Humanos , Neoplasias/genética
15.
J Cell Sci ; 126(Pt 14): 3095-104, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23857907

RESUMO

Spermatogenesis is a complex process that generates haploid germ cells or spores and implements meiosis, a succession of two special cell divisions that are required for homologous chromosome segregation. During prophase to the first meiotic division, homologous recombination (HR) repairs Spo11-dependent DNA double-strand breaks (DSBs) in the presence of telomere movements to allow for chromosome pairing and segregation at the meiosis I division. In contrast to HR, non-homologous end joining (NHEJ), the major DSB repair mechanism during the G1 cell cycle phase, is downregulated during early meiotic prophase. At somatic mammalian telomeres, the NHEJ factor Ku70/80 inhibits HR, as does the Rap1 component of the shelterin complex. Here, we investigated the role of Ku70 and Rap1 in meiotic telomere redistribution and genome protection in spermatogenesis by studying single and double knockout mice. Ku70(-/-) mice display reduced testis size and compromised spermatogenesis, whereas meiotic telomere dynamics and chromosomal bouquet formation occurred normally in Ku70(-/-) and Ku70(-/-)Rap1(Δ/Δ) knockout spermatocytes. Elevated mid-preleptotene frequencies were associated with significantly increased DNA damage in Ku-deficient B spermatogonia, and in differentiated Sertoli cells. Significantly elevated levels of γH2AX foci in Ku70(-/-) diplotene spermatocytes suggest compromised progression of DNA repair at a subset of DSBs. This might explain the elevated meiotic metaphase apoptosis that is present in Ku70-deficient stage XII testis tubules, indicating spindle assembly checkpoint activation. In summary, our data indicate that Ku70 is important for repairing DSBs in somatic cells and in late spermatocytes of the testis, thereby assuring the fidelity of spermatogenesis.


Assuntos
Antígenos Nucleares/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Espermatogênese , Testículo/patologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Antígenos Nucleares/genética , Apoptose/genética , Ciclo Celular , Células Cultivadas , Reparo do DNA/genética , DNA Recombinante/genética , Proteínas de Ligação a DNA/genética , Autoantígeno Ku , Masculino , Meiose/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão/genética , Recombinação Genética , Proteínas rap1 de Ligação ao GTP/genética
16.
Science ; 381(6658): 653-660, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37440612

RESUMO

Nonhomologous end-joining (NHEJ) and homologous recombination (HR) are the primary pathways for repairing DNA double-strand breaks (DSBs) during interphase, whereas microhomology-mediated end-joining (MMEJ) has been regarded as a backup mechanism. Through CRISPR-Cas9-based synthetic lethal screens in cancer cells, we identified subunits of the 9-1-1 complex (RAD9A-RAD1-HUS1) and its interacting partner, RHINO, as crucial MMEJ factors. We uncovered an unexpected function for RHINO in restricting MMEJ to mitosis. RHINO accumulates in M phase, undergoes Polo-like kinase 1 (PLK1) phosphorylation, and interacts with polymerase θ (Polθ), enabling its recruitment to DSBs for subsequent repair. Additionally, we provide evidence that MMEJ activity in mitosis repairs persistent DSBs that originate in S phase. Our findings offer insights into the synthetic lethal relationship between the genes POLQ and BRCA1 and BRAC2 and the synergistic effect of Polθ and poly(ADP-ribose) polymerase (PARP) inhibitors.


Assuntos
Proteínas de Ciclo Celular , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Exonucleases , Mitose , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Exonucleases/genética , Exonucleases/metabolismo , Células HEK293 , Mitose/genética , Poli(ADP-Ribose) Polimerases/metabolismo
17.
bioRxiv ; 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36993461

RESUMO

DNA double-strand breaks (DSBs) are toxic lesions that can lead to genome instability if not properly repaired. Breaks incurred in G1 phase of the cell cycle are predominantly fixed by non-homologous end-joining (NHEJ), while homologous recombination (HR) is the primary repair pathway in S and G2. Microhomology-mediated end-joining (MMEJ) is intrinsically error-prone and considered a backup DSB repair pathway that becomes essential when HR and NHEJ are compromised. In this study, we uncover MMEJ as the major DSB repair pathway in M phase. Using CRISPR/Cas9-based synthetic lethal screens, we identify subunits of the 9-1-1 complex (RAD9A-HUS1-RAD1) and its interacting partner, RHINO, as critical MMEJ factors. Mechanistically, we show that the function of 9-1-1 and RHINO in MMEJ is inconsistent with their well-established role in ATR signaling. Instead, RHINO plays an unexpected and essential role in directing mutagenic repair to M phase by directly binding to Polymerase theta (Polθ) and promoting its recruitment to DSBs in mitosis. In addition, we provide evidence that mitotic MMEJ repairs persistent DNA damage that originates in S phase but is not repaired by HR. The latter findings could explain the synthetic lethal relationship between POLQ and BRCA1/2 and the synergistic effect of Polθ and PARP inhibitors. In summary, our study identifies MMEJ as the primary pathway for repairing DSBs during mitosis and highlights an unanticipated role for RHINO in directing mutagenic repair to M phase.

18.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36976649

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy that harbors mutations in homologous recombination-repair (HR-repair) proteins in 20%-25% of cases. Defects in HR impart a specific vulnerability to poly ADP ribose polymerase inhibitors and platinum-containing chemotherapy in tumor cells. However, not all patients who receive these therapies respond, and many who initially respond ultimately develop resistance. Inactivation of the HR pathway is associated with the overexpression of polymerase theta (Polθ, or POLQ). This key enzyme regulates the microhomology-mediated end-joining (MMEJ) pathway of double-strand break (DSB) repair. Using human and murine HR-deficient PDAC models, we found that POLQ knockdown is synthetically lethal in combination with mutations in HR genes such as BRCA1 and BRCA2 and the DNA damage repair gene ATM. Further, POLQ knockdown enhances cytosolic micronuclei formation and activates signaling of cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING), leading to enhanced infiltration of activated CD8+ T cells in BRCA2-deficient PDAC tumors in vivo. Overall, POLQ, a key mediator in the MMEJ pathway, is critical for DSB repair in BRCA2-deficient PDAC. Its inhibition represents a synthetic lethal approach to blocking tumor growth while concurrently activating the cGAS-STING signaling pathway to enhance tumor immune infiltration, highlighting what we believe to be a new role for POLQ in the tumor immune environment.


Assuntos
Adenocarcinoma , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Quebras de DNA de Cadeia Dupla , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Recombinação Homóloga , Transdução de Sinais , Imunidade , Neoplasias Pancreáticas
19.
Chromosoma ; 120(2): 151-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20927532

RESUMO

Attachment of telomeres to the nuclear envelope (NE) and their clustering in a chromosomal bouquet during meiotic prophase I is an evolutionary conserved event that promotes chromosome pairing and recombination. In fission yeast, bouquet formation fails when the telomeric protein Rap1 is absent or when the telomeric protein Taz1 fails to recruit Rap1 to telomeres. The mammalian Rap1 orthologue is a component of the shelterin complex and localises to telomeres through an interaction with a Taz1-like telomeric DNA binding factor, TRF2. Here, we investigated the role of mammalian Rap1 in meiotic telomere attachment and clustering by analysing spermatogenesis in Rap1-deficient mice. The results establish that the meiotic three-dimensional nuclear architecture and recombination are not affected by the absence of Rap1. Furthermore, Rap1-deficient meiotic telomeres assemble the SUN1 nuclear membrane protein, attach to the NE, and undergo bouquet formation indistinguishable from the wild-type setting. Thus, the role of Rap1 in meiosis is not conserved between fission yeast and mammals, suggesting that mammals have alternative modes for connecting telomeres to SUN proteins on the meiotic nuclear envelope.


Assuntos
Meiose , Membrana Nuclear/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/genética , Ligação Proteica , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/genética
20.
Trends Cell Biol ; 32(6): 527-536, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35063336

RESUMO

Telomeres are distinctive structures that protect the ends of linear chromosomes and ensure genome stability. They are composed of long tracks of repetitive and G-rich DNA that is bound by shelterin, a dedicated six-subunit protein complex. In somatic cells, shelterin protects telomeres from the DNA damage response and regulates telomere length. Telomere repeats are replenished by telomerase, a specialized ribonucleoprotein composed of telomerase reverse transcriptase and an integral RNA component. Telomere protection and telomerase regulation have been primarily studied in somatic cells. However, recent evidence points out striking differences in the context of embryonic stem cells (ESCs). In this review, we discuss insights into telomere protection in ESCs versus somatic cells and summarize findings on telomerase regulation as a function of pluripotency.


Assuntos
Telomerase , Células-Tronco Embrionárias , Instabilidade Genômica , Humanos , Complexo Shelterina , Telomerase/química , Telomerase/genética , Telomerase/metabolismo , Telômero/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA