Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(4): 043001, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148134

RESUMO

A method is proposed to determine the M1 nuclear transition amplitude and hence the lifetime of the "nuclear clock transition" between the low-lying (∼8 eV) first isomeric state and the ground state of ^{229}Th from a measurement of the ground-state g factor of few-electron ^{229}Th ions. As a tool, the effect of nuclear hyperfine mixing in highly charged ^{229}Th ions such as ^{229}Th^{89+} or ^{229}Th^{87+} is used. The ground-state-only g-factor measurement would also provide first experimental evidence of nuclear hyperfine mixing in atomic ions. Combining the measurements for H-, Li-, and B-like ^{229}Th ions has a potential to improve the initial result for a single charge state and to determine the nuclear magnetic moment to a higher accuracy than that of the currently accepted value. The calculations include relativistic, interelectronic-interaction, QED, and nuclear effects.

2.
Phys Rev Lett ; 126(18): 183001, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018778

RESUMO

The strong mixing of close levels with two valence electrons in Be-like xenon greatly complicates ab initio QED calculations beyond the first-order approximation. Because of a strong interplay between the electron-electron correlation and QED effects, the standard single-level perturbative QED approach may fail, even if it takes into account the second-order screened QED diagrams. In the present Letter, the corresponding obstacles are overcome by working out the QED perturbation theory for quasidegenerate states. The contributions of all the Feynman diagrams up to the second order are taken into account. The many-electron QED effects are rigorously evaluated in the framework of the extended Furry picture to all orders in the nuclear-strength parameter αZ. The higher-order electron-correlation effects are considered within the Breit approximation. The nuclear recoil effect is accounted for as well. The developed approach is applied to high-precision QED calculations of the ground and singly excited energy levels in Be-like xenon. The most accurate theoretical predictions for the binding and excitation energies are obtained. These results deviate from the most precise experimental value by 3σ but perfectly agree with a more recent measurement.

3.
Phys Rev Lett ; 123(9): 093401, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524486

RESUMO

The process of a positron-bound-electron annihilation with simultaneous emission of two photons is investigated theoretically. A fully relativistic formalism based on an ab initio QED description of the process is worked out. The developed approach is applied to evaluate the annihilation of a positron with K-shell electrons of a silver atom, for which a strong contradiction between theory and experiment was previously stated. The results obtained here resolve this longstanding disagreement and, moreover, demonstrate a sizable difference with approaches so far used for calculations of the positron-bound-electron annihilation process, namely, Lee's and the impulse approximations.

4.
Phys Rev Lett ; 123(11): 113401, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31573256

RESUMO

In slow collisions of two bare nuclei with the total charge larger than the critical value Z_{cr}≈173, the initially neutral vacuum can spontaneously decay into the charged vacuum and two positrons. The detection of the spontaneous emission of positrons would be direct evidence of this fundamental phenomenon. However, the spontaneously produced particles are indistinguishable from the dynamical background in the positron spectra. We show that the vacuum decay can nevertheless be observed via impact-sensitive measurements of pair-production probabilities. The possibility of such an observation is demonstrated using numerical calculations of pair production in low-energy collisions of heavy nuclei.

5.
Phys Rev Lett ; 123(17): 173001, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702246

RESUMO

The recently established agreement between experiment and theory for the g factors of lithiumlike silicon and calcium ions manifests the most stringent test of the many-electron bound-state quantum electrodynamics (QED) effects in the presence of a magnetic field. In this Letter, we present a significant simultaneous improvement of both theoretical g_{th}=2.000 889 894 4 (34) and experimental g_{exp}=2.000 889 888 45 (14) values of the g factor of lithiumlike silicon ^{28}Si^{11+}. The theoretical precision now is limited by the many-electron two-loop contributions of the bound-state QED. The experimental value is accurate enough to test these contributions on a few percent level.

6.
Phys Rev Lett ; 119(26): 263001, 2017 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-29328712

RESUMO

The nuclear recoil effect on the g factor of Li-like ions is evaluated. The one-electron recoil contribution is treated within the framework of the rigorous QED approach to the first order in the electron-to-nucleus mass ratio m/M and to all orders in the parameter αZ. These calculations are performed in a range Z=3-92. The two-electron recoil term is calculated for low- and middle-Z ions within the Breit approximation using a four-component approach. The results for the two-electron recoil part obtained in the Letter strongly disagree with the previous calculations performed using an effective two-component Hamiltonian. The obtained value for the recoil effect is used to calculate the isotope shift of the g factor of Li-like ^{A}Ca^{17+} with A=40 and A=48 which was recently measured. It is found that the new theoretical value for the isotope shift is closer to the experimental one than the previously obtained value.

7.
Phys Rev Lett ; 117(25): 253001, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-28036218

RESUMO

The quantum electrodynamics (QED) corrections are directly incorporated into the most accurate treatment of the correlation corrections for ions with complex electronic structure of interest to metrology and tests of fundamental physics. We compared the performance of four different QED potentials for various systems to access the accuracy of QED calculations and to make a prediction of highly charged ion properties urgently needed for planning future experiments. We find that all four potentials give consistent and reliable results for ions of interest. For the strongly bound electrons, the nonlocal potentials are more accurate than the local potential.

8.
Phys Rev Lett ; 115(23): 233002, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26684115

RESUMO

We report high-precision calculations of the nuclear recoil effect to the Lamb shift of hydrogenlike atoms to the first order in the electron-nucleus mass ratio and to all orders in the nuclear binding strength parameter Zα. The results are in excellent agreement with the known terms of the Zα expansion and allow an accurate identification of the nonperturbative higher-order remainder. For hydrogen, the higher-order remainder was found to be much larger than anticipated. This result resolves the long-standing disagreement between the numerical all-order and analytical Zα-expansion approaches to the recoil effect and completely removes the second-largest theoretical uncertainty in the hydrogen Lamb shift of the 1S and 2S states.

9.
Phys Rev Lett ; 112(25): 253004, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-25014810

RESUMO

A rigorous QED evaluation of the two-photon exchange corrections to the g factor of lithiumlike ions is presented. The screened self-energy corrections are calculated for the intermediate-Z region, and its accuracy for the high-Z region is essentially improved in comparison with that of previous calculations. As a result, the theoretical accuracy of the g factor of lithiumlike ions is significantly increased. The theoretical prediction obtained for the g factor of (28)Si(11+) g(th) = 2.000 889 892(8) is in an excellent agreement with the corresponding experimental value g(exp) = 2.000 889 889 9(21) [A. Wagner et al., Phys. Rev. Lett. 110, 033003 (2013).

10.
Phys Rev Lett ; 113(11): 113001, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25259973

RESUMO

The photoelectric effect has been studied in the regime of hard x rays and strong Coulomb fields via its time-reversed process of radiative recombination (RR). In the experiment, the relativistic electrons recombined into the 2p_{3/2} excited state of hydrogenlike uranium ions, and both the RR x rays and the subsequently emitted characteristic x rays were detected in coincidence. This allowed us to observe the coherence between the magnetic substates in a highly charged ion and to identify the contribution of the spin-orbit interaction to the RR process.

11.
Phys Rev Lett ; 110(3): 033003, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23373920

RESUMO

The g factor of lithiumlike silicon (28)Si(11+) has been measured in a triple-Penning trap with a relative uncertainty of 1.1×10(-9) to be g(exp)=2.000 889 889 9(21). The theoretical prediction for this value was calculated to be g(th)=2.000 889 909(51) improving the accuracy to 2.5×10(-8) due to the first rigorous evaluation of the two-photon exchange correction. The measured value is in excellent agreement with the theoretical prediction and yields the most stringent test of bound-state QED for the g factor of the 1s(2)2s state and the relativistic many-electron calculations in a magnetic field.

12.
Phys Rev Lett ; 108(7): 073001, 2012 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-22401198

RESUMO

A rigorous evaluation of the two-photon exchange corrections to the hyperfine structure in lithiumlike heavy ions is presented. As a result, the theoretical accuracy of the specific difference between the hyperfine splitting values of H- and Li-like Bi ions is significantly improved. This opens a possibility for the stringent test of the many-electron QED effects on a few percent level in the strongest electromagnetic field presently available in experiments.

13.
Phys Rev Lett ; 106(5): 052504, 2011 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-21405389

RESUMO

In the search for the nuclide with the largest probability for neutrinoless double-electron capture, we have determined the Q(ϵϵ) value between the ground states of (152)Gd and (152)Sm by Penning-trap mass-ratio measurements. The new Q(ϵϵ) value of 55.70(18) keV results in a half-life of 10(26) yr for a 1 eV neutrino mass. With this smallest half-life among known 0νϵϵ transitions, (152)Gd is a promising candidate for the search for neutrinoless double-electron capture.

14.
Phys Rev Lett ; 107(15): 152501, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22107289

RESUMO

The theory of octupolar-excitation ion-cyclotron-resonance mass spectrometry is presented which predicts an increase of up to several orders of magnitude in resolving power under certain conditions. The new method has been applied for a direct Penning-trap mass-ratio determination of the (164)Er-(164)Dy mass doublet. (164)Er is a candidate for the search for neutrinoless double-electron capture. However, the measured Q(ϵϵ) value of 25.07(12) keV results in a half-life of 10(30) years for a 1 eV Majorana-neutrino mass.

15.
Phys Rev Lett ; 103(3): 033005, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19659276

RESUMO

A rigorous evaluation of the complete gauge-invariant set of the screened one-loop QED corrections to the hyperfine structure and g factor in lithiumlike heavy ions is presented. The calculations are performed in both Feynman and Coulomb gauges for the virtual photon mediating the interelectronic interaction. As a result, the most accurate theoretical predictions for the specific difference between the hyperfine splitting values of H- and Li-like Bi ions as well as for the g factor of the Li-like Pb ion are obtained.

16.
Phys Rev Lett ; 100(7): 073201, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18352547

RESUMO

Isotope shifts in dielectronic recombination spectra were studied for Li-like (A)Nd(57+) ions with A=142 and A=150. From the displacement of resonance positions energy shifts deltaE(142 150)(2s-2p(1/2))=40.2(3)(6) meV [(stat)(sys)] and deltaE(142 150)(2s-2p(3/2))=42.3(12)(20) meV of 2s-2p(j) transitions were deduced. An evaluation of these values within a full QED treatment yields a change in the mean-square charge radius of (142 150)deltar(2)=-1.36(1)(3) fm(2). The approach is conceptually new and combines the advantage of a simple atomic structure with high sensitivity to nuclear size.

17.
Phys Rev Lett ; 97(25): 253004, 2006 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-17280349

RESUMO

A calculation valid to all orders in the nuclear-strength parameter is presented for the two-loop Lamb shift, notably for the two-loop self-energy correction, to the 2p-2s transition energies in heavy Li-like ions. The calculation removes the largest theoretical uncertainty for these transitions and yields the first experimental identification of two-loop QED effects in the region of the strong binding field.

18.
Phys Rev Lett ; 96(25): 253002, 2006 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-16907301

RESUMO

A possibility for a determination of the fine structure constant in experiments on the bound-electron g-factor is examined. It is found that studying a specific difference of the g-factors of B- and H-like ions of the same spinless isotope in the Pb region to the currently accessible experimental accuracy of 7 x 10(-10) would lead to a determination of the fine structure constant to an accuracy which is better than that of the currently accepted value. Further improvements of the experimental and theoretical accuracy could provide a value of the fine structure constant which is several times more precise than the currently accepted one.

19.
Phys Rev Lett ; 97(10): 103002, 2006 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-17025810

RESUMO

The relativistic recoil effect has been the object of experimental investigations using highly charged ions at the Heidelberg electron beam ion trap. Its scaling with the nuclear charge Z boosts its contribution to a measurable level in the magnetic-dipole (M1) transitions of B- and Be-like Ar ions. The isotope shifts of 36Ar versus 40Ar have been detected with sub-ppm accuracy, and the recoil effect contribution was extracted from the 1s(2)2s(2)2p 2P(1/2) - 2P(3/2) transition in Ar13+ and the 1s(2)2s2p 3P1-3P2 transition in Ar14+. The experimental isotope shifts of 0.00123(6) nm (Ar13+) and 0.00120(10) nm (Ar14+) are in agreement with our present predictions of 0.00123(5) nm (Ar13+) and 0.00122(5) nm (Ar14+) based on the total relativistic recoil operator, confirming that a thorough understanding of correlated relativistic electron dynamics is necessary even in a region of intermediate nuclear charges.

20.
Phys Rev Lett ; 94(21): 213002, 2005 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-16090317

RESUMO

The complete gauge-invariant set of the one-loop QED corrections to the parity-nonconserving 6s-7s amplitude in 133Cs is evaluated to all orders in alphaZ using a local version of the Dirac-Hartree-Fock potential. The calculations are performed in both length and velocity gauges for the absorbed photon. The total binding QED correction is found to be -0.27(3)%. The weak charge of 133Cs, derived using two most accurate values of the vector transition polarizability beta, is Q(W)=-72.57(46) for beta=26.957(51)a(3)(B) and Q(W)=-73.09(54) for beta=27.15(11)a(3)(B). The first value deviates by 1.1sigma from the prediction of the standard model, while the second one is in perfect agreement with it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA